Irina V. Zhdanova
Boston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irina V. Zhdanova.
Clinical Pharmacology & Therapeutics | 1995
Irina V. Zhdanova; Richard J. Wurtman; Harry J. Lynch; John R. Ives; Andrew B. Dollins; Claudia Morabito; Jean K. Matheson; Donald L. Schomer
We previously observed that low oral doses of melatonin given at noon increase blood melatonin concentrations to those normally occurring nocturnally and facilitate sleep onset, as assessed using an involuntary muscle relaxation test. In this study we examined the induction of polysomnographically recorded sleep by similar doses given later in the evening, close to the times of endogenous melatonin release and habitual sleep onset. Volunteers received the hormone (oral doses of 0.3 or 1.0 mg) or placebo at 6, 8, or 9 PM. Latencies to sleep onset, to stage 2 sleep, and to rapid eye movement (REM) sleep were measured polysomnographically. Either dose given at any of the three time points decreased sleep onset latency and latency to stage 2 sleep. Melatonin did not suppress REM sleep or delay its onset. Most volunteers could clearly distinguish between the effects of melatonin and those of placebo when the hormone was tested at 6 or 8 PM. Neither melatonin dose induced “hangover” effects, as assessed with mood and performance tests administered on the morning after treatment. These data provide new evidence that nocturnal melatonin secretion may be involved in physiologic sleep onset and that exogenous melatonin may be useful in treating insomnia.
Brain Research | 2001
Irina V. Zhdanova; Steven Y. Wang; Ojingwa U. Leclair; Nadia Danilova
The sleep-promoting effect of the pineal hormone melatonin in humans is known for decades. However, the mechanisms of this phenomenon remain obscure, mainly due to lack of a simple, genetically tractable, animal model. We now report that melatonin promotes sleep-like state in a diurnal lower vertebrate, zebrafish (Danio rerio), and this effect is mediated through activation of specific melatonin membrane receptors. Furthermore, our data show that the sleep-like state in zebrafish has fundamental similarities with sleep in mammals, including characteristic postures, elevated arousal threshold to sensory stimulation and a compensatory rest rebound following rest deprivation, and can be induced by conventional hypnotics, diazepam and sodium pentobarbital. Collectively, these data indicate that melatonin is evolutionary conserved sleep-promoting agent in diurnal species and suggest that zebrafish provide an efficient animal model for studying the molecular mechanisms of sleep regulation and for screening new types of hypnotic medications.
Physiology & Behavior | 2008
Marcos A. López-Patiño; Lili Yu; Howard Cabral; Irina V. Zhdanova
Continued usage of cocaine is determined by genetic, conditioned and homeostatic factors, while it is reinforced by drug-induced reward and the emotionally negative state of drug withdrawal, which includes anxiety. The molecular mechanisms of these long-term behavioral and physiological alterations have yet to be fully elucidated. Here we demonstrate that in zebrafish, a wide range of non-anesthetic cocaine doses, 0.015-15 muM, does not result in acute alterations in locomotor activity, in spite of the high brain cocaine levels induced (7-120 pg/microg protein). Conversely, cocaine withdrawal causes hyperactivity associated with stereotypy. The behavioral hyperactivity is progressively increased during the initial period of withdrawal (24-72 h) and is maintained for at least 5 days. Such effect of cocaine withdrawal is aggravated by environmental stimulation and attenuated in the home environment. Administration of cocaine (1.5 microM) or a non-sedative dose of diazepam (5 microM, immersion) acutely counteracts withdrawal-associated hyperactivity and stereotypy in zebrafish, with the magnitude of these effects positively correlating with the degree of prior increase in basal activity. Administration of an anxiogenic benzodiazepine inverse agonist, FG-7142, results in zebrafish behavior similar to that observed during cocaine withdrawal. Together, the results suggest that cocaine withdrawal produces long-lasting behavioral effects in zebrafish which are consistent with an anxiety-like state. Thus, zebrafish, a powerful model for the study of vertebrate genetics, could provide insights into the molecular mechanisms of drug withdrawal.
Brain Research Bulletin | 2008
Irina V. Zhdanova; Lihong Yu; Marcos A. López-Patiño; Eric K. Shang; Shuji Kishi; Emmanuel Guelin
Aging is a complex process involving intracellular changes and, notably, modifications in intercellular communications, required for coordinated responses to internal and external events. One of the potential reasons for such changes is an age-dependent failure of the integrating systems, including the circadian clock. Here we demonstrate that aging in a diurnal vertebrate, zebrafish (Danio rerio), is associated with major but selective circadian alterations. By 3-5 years of age, zebrafish have reduced amplitude and increased fragmentation of entrained circadian rhythms of activity, with fast desynchronization of the rhythms in the absence of environmental time cues. Aging in zebrafish is also associated with a reduction in the overall duration of nighttime sleep, followed by lower activity levels and a higher arousal threshold during the day. The production of the principal circadian hormone, melatonin, progressively declines during zebrafish aging. However, the ability of melatonin to acutely promote sleep and entrain circadian rhythms of activity remains robust until at least 4-5 years of age, consistent with the preserved levels of mRNA expression for melatonin receptors. Aged zebrafish have altered expression of the circadian genes zBmal1 and zPer1 but not zClock1. A lack of circadian time cues alters cognitive performance in aged more than in young zebrafish and this can be partially attenuated by daily melatonin administration. The advantages of zebrafish as a diurnal, small, prolific and genetically well-characterized vertebrate model provide new opportunities to clarify the intrinsic circadian factors involved in human aging and promote the search for prophylactic and treatment strategies.
PLOS ONE | 2006
Lili Yu; Valter Tucci; Shuji Kishi; Irina V. Zhdanova
Background Age-related impairments in cognitive functions represent a growing clinical and social issue. Genetic and behavioral characterization of animal models can provide critical information on the intrinsic and environmental factors that determine the deterioration or preservation of cognitive abilities throughout life. Methodology/Principal Findings Behavior of wild-type, mutant and gamma-irradiated zebrafish (Danio rerio) was documented using image-analysis technique. Conditioned responses to spatial, visual and temporal cues were investigated in young, middle-aged and old animals. The results demonstrate that zebrafish aging is associated with changes in cognitive responses to emotionally positive and negative experiences, reduced generalization of adaptive associations, increased stereotypic and reduced exploratory behavior and altered temporal entrainment. Genetic upregulation of cholinergic transmission attenuates cognitive decline in middle-aged achesb55/+ mutants, compared to wild-type siblings. In contrast, the genotoxic stress of gamma-irradiation accelerates the onset of cognitive impairment in young zebrafish. Conclusions/Significance These findings would allow the use of powerful molecular biological resources accumulated in the zebrafish field to address the mechanisms of cognitive senescence, and promote the search for therapeutic strategies which may attenuate age-related cognitive decline.
Physiology & Behavior | 2008
Marcos A. López Patiño; Lili Yu; Bryan K. Yamamoto; Irina V. Zhdanova
The acute responses to cocaine and its withdrawal contribute to cocaine dependence and potentiate relapse, with gender being one of the genetic factors affecting the outcome. Here we report that in both male and female zebrafish (Danio rerio, AB strain), an initial low-dose cocaine treatment (1.5 muM, immersion) does not acutely change their behavior. The cocaine withdrawal, however, is associated with an anxiety-like state that develops earlier in female zebrafish but is more robust and persistent in males, and can be acutely attenuated by cocaine administration. This is not a result of gender differences in the expression of anxiety-like state, since behavioral responses to an anxiogenic drug, FG-7142, are similar in male and female zebrafish. The basal brain dopamine (DA) levels and the expression of dopamine transporter mRNA (zDAT) show no significant sexual dimorphism. Acute cocaine exposure does not significantly change DA or zDAT. Withdrawal from repeated cocaine administration results in an overall reduction in zDAT, as well as an increase in DA levels. Neither treatment leads to significant gender differences in brain DA or zDAT. The common and gender-specific effects of cocaine on zebrafish, a well-characterized model of vertebrate development and genetics, should help in understanding the mechanisms involved in the anxiety associated with cocaine withdrawal and provide new opportunities in search for therapeutic solutions.
The FASEB Journal | 2004
Nadia Danilova; Valery E. Krupnik; David Sugden; Irina V. Zhdanova
All vertebrates show a dramatic circadian rhythm in circulating melatonin with high levels at night and very low levels during daytime. In adults, melatonin is thought to synchronize other circadian rhythms and regulate seasonal rhythms in photoperiodic animals by acting on specific G‐protein coupled receptors. The role of melatonin in development is unknown, even though melatonin receptors appear to be more highly expressed in developing embryos and neonates than in adults. In this study on zebrafish embryos, we describe a role for melatonin in increasing cell proliferation and accelerating development. We propose that melatonin has a role in extending the safe limit of proliferation rate at night to allow more rapid development when potentially damaging ultraviolet light is absent.
Physiology & Behavior | 2002
Irina V. Zhdanova; David A. Geiger; Anthony L. Schwagerl; Ojingwa U. Leclair; Ronald Killiany; Judy A. Taylor; Douglas L. Rosene; Mark B. Moss; Bertha K. Madras
Nocturnal melatonin secretion is concurrent with consolidated sleep episodes in diurnal mammals and physiological melatonin levels can promote sleep onset in humans and in pigtail macaques. In order to further investigate the effects of melatonin treatment on sleep parameters in diurnal nonhuman primates, three macaque species have been studied: Macaca nemestrina, Macaca fascicularis, and Macaca mulatta. Sleep was assessed using continuous actigraphic recording of motor activity in animals maintained under 12:12-h light/dark cycle. Oral doses of melatonin (5-320 microg/kg) were administered 2 h before lights-off time, with 5- and 10-microg/kg doses resulting in physiological circulating melatonin levels (31-95 pg/ml). The effects of melatonin administration were similar in three species studied and included significantly earlier sleep onset time and longer sleep period time, with no difference in time of awakening, following administration of both physiological (5-10 microg/kg) and pharmacological (20-320 microg/kg) doses. While low melatonin doses (5-20 microg/kg) did not significantly affect nighttime sleep efficiency, higher pharmacological doses reduced sleep efficiency and increased sleep fragmentation at night, and reduced spontaneous daytime locomotor activity. Daily administration of a 5-microg/kg dose for 4 weeks or gradually escalating melatonin doses (5-320 microg/kg over a 3-week period) did not result in the development of tolerance or sensitization to the effect of melatonin on sleep initiation or sleep period. These data affirm that sleep-promoting effects of melatonin observed in humans are also typical for diurnal primates. They also suggest that physiological and pharmacological melatonin levels might produce different effects on sleep efficiency and that nonhuman primates can serve as adequate animal model for studying the mechanisms of melatonins action on sleep and performance.
Reviews in The Neurosciences | 2011
Irina V. Zhdanova
Abstract The function of sleep remains a central enigma of modern biology, in spite of the obvious importance of sleep for normal physiology and cognition. The zebrafish has emerged as a promising new model for studying sleep, its changes with age, and the impact of sleep alterations on cognitive function. Recent studies of this diurnal vertebrate have provided new insights into the dual role of the pineal hormone melatonin and its receptors, regulating sleep in diurnal vertebrates through both homeostatic and circadian mechanisms. Research in zebrafish has also revealed interactions between melatonin and the hypocretin/orexin system, another important sleep-wake modulator. Future investigations should benefit from the conservation in zebrafish of mechanisms that regulate normal sleep, our extensive knowledge of their molecular biology, the availability of multiple transgenic and mutant phenotypes, and the feasibility of applying sensitive in vivo imaging techniques to record sleep-related neuronal activity in these optically transparent subjects. The established sensitivity of zebrafish to many pharmacological hypnotics should also contribute to the development of new, safe and effective sleep medications.
Aging Cell | 2007
Stephanie B. Tsai; Valter Tucci; Junzo Uchiyama; Niora J. Fabian; Mao C. Lin; Peter E. Bayliss; Donna Neuberg; Irina V. Zhdanova; Shuji Kishi
Among vertebrates, fish and mammals show intriguing differences in their growth control properties with age. The potential for unlimited or indeterminate growth in a variety of fish species has prompted many questions regarding the senescent phenomena that appear during the aging process in these animals. Using zebrafish as our model system, we have attempted in our current study to examine the growth phenomena in fish in relation to the onset of senescence‐associated symptoms, and to evaluate the effects of genotoxic stress on these processes. We observed in the course of these analyses that the zebrafish undergoes continuous growth, irrespective of age, past the point of sexual maturation with gradually decreasing growth rates at later stages. Animal population density, current body size and chronological age also play predominant roles in regulating zebrafish growth and all inversely influence the growth rate. Interestingly, the induction of genotoxic stress by exposure to ionizing radiation (IR) did not adversely affect this body growth ability in zebrafish. However, IR was found to chronically debilitate the regeneration of amputated caudal fins and thereby induce high levels of abnormal fin regeneration in the adult zebrafish. In addition, by resembling and mimicking the natural course of aging, IR treatments likewise enhanced several other symptoms of senescence, such as a decline in reproductive abilities, increased senescence‐associated β‐galactosidase activity and a reduction in melatonin secretion. Our current data thus suggest that during the lifespan of zebrafish, the onset of senescence‐associated symptoms occurs in parallel with continuous growth throughout mid‐adulthood. Moreover, our present findings indicate that genotoxic DNA damage may play a role as a rate‐limiting factor during the induction of senescence, but not in the inhibition of continuous, density‐dependent growth in adult zebrafish.