Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Vlasova-St. Louis is active.

Publication


Featured researches published by Irina Vlasova-St. Louis.


Journal of Biological Chemistry | 2012

Regulation of CUG-binding Protein 1 (CUGBP1) Binding to Target Transcripts upon T Cell Activation

Daniel Beisang; Bernd Rattenbacher; Irina Vlasova-St. Louis; Paul R. Bohjanen

Background: We identified target transcripts of the RNA-binding protein CUGBP1 in resting and activated T cells. Results: T cell activation induced CUGBP1 phosphorylation, causing decreased CUGBP1 binding to target transcripts. Conclusion: CUGBP1 binding to a network of target transcripts is regulated by CUGBP1 phosphorylation following T cell activation. Significance: CUGBP1 target transcripts are coordinately regulated during T cell activation. The RNA-binding protein, CUG-binding protein 1 (CUGBP1), regulates gene expression at the levels of alternative splicing, mRNA degradation, and translation. We used RNA immunoprecipitation followed by microarray analysis to identify the cytoplasmic mRNA targets of CUGBP1 in resting and activated primary human T cells and found that CUGBP1 targets were highly enriched for the presence of GU-rich elements (GREs) in their 3′-untranslated regions. The number of CUGBP1 target transcripts decreased dramatically following T cell activation as a result of activation-dependent phosphorylation of CUGBP1 and decreased ability of CUGBP1 to bind to GRE-containing RNA. A large percentage of CUGBP1 target transcripts exhibited rapid and transient up-regulation, and a smaller percentage exhibited transient down-regulation following T cell activation. Many of the transiently up-regulated CUGBP1 target transcripts encode important regulatory proteins necessary for transition from a quiescent state to a state of cellular activation and proliferation. Overall, our results show that CUGBP1 binding to certain GRE-containing target transcripts decreased following T cell activation through activation-dependent phosphorylation of CUGBP1.


RNA Biology | 2011

Global assessment of GU-rich regulatory content and function in the human transcriptome.

Anason S. Halees; Edward Hitti; Maher Al-Saif; Linah Mahmoud; Irina Vlasova-St. Louis; Daniel Beisang; Paul R. Bohjanen; Khalid S.A. Khabar

Unlike AU-rich elements (AREs) that are largely present in the 3’UTRs of many unstable mammalian mRNAs, the function and abundance of GU-rich elements (GREs) are poorly understood. We performed a genome-wide analysis and found that at least 5% of human genes contain GREs in their 3’UTRs with functional over-representation in genes involved in transcription, nucleic acid metabolism, developmental processes, and neurogenesis. GREs have similar sequence clustering patterns with AREs such as overlapping GUUUG pentamers and enrichment in 3′UTRs. Functional analysis using T-cell mRNA expression microarray data confirms correlation with mRNA destabilization. Reporter assays show that compared to AREs the ability of GREs to destabilize mRNA is modest and does not increase with the increasing number of overlapping pentamers. Naturally occurring GREs within U-rich contexts were more potent in destabilizing GFP reporter mRNAs than synthetic GREs with perfectly overlapping pentamers. Overall, we find that GREs bear a resemblance to AREs in sequence patterns but they regulate a different repertoire of genes and have different dynamics of mRNA decay. A dedicated resource on all GRE-containing genes of the human, mouse and rat genomes can be found at brp.kfshrc.edu.sa/GredOrg.


Biochimica et Biophysica Acta | 2013

CELFish ways to modulate mRNA decay

Irina Vlasova-St. Louis; Alexa M. Dickson; Paul R. Bohjanen; Carol J. Wilusz

The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Journal of Interferon and Cytokine Research | 2014

Post-Transcriptional Regulation of Cytokine Signaling by AU-Rich and GU-Rich Elements

Irina Vlasova-St. Louis; Paul R. Bohjanen

Cytokines are necessary for cell communication to enable responses to external stimuli that are imperative for the survival and maintenance of homeostasis. Dysfunction of the cytokine network has detrimental effects on intra- and extracellular environments. Thus, it is critical that the expression of cytokines and the signals transmitted by cytokines to target cells are tightly regulated at numerous levels, including transcriptional and post-transcriptional levels. Here, we briefly summarize the role of AU-rich elements (AREs) in the regulation of cytokine gene expression at the post-transcriptional level and describe a role for GU-rich elements (GREs) in coordinating the regulation of cytokine signaling. GREs function as post-transcriptional regulators of proteins that control cellular activation, growth, and apoptosis. GREs and AREs work in concert to coordinate cytokine signal transduction pathways. The precise regulation of cytokine signaling is particularly important, because its dysregulation can lead to human diseases.


Journal of Acquired Immune Deficiency Syndromes | 2010

Antiretroviral Therapy Down-Regulates Innate Antiviral Response Genes in Patients With AIDS in Sub-Saharan Africa

David R. Boulware; David B. Meya; Tracy L. Bergemann; Darlisha A. Williams; Irina Vlasova-St. Louis; Josh Rhein; Jack H. Staddon; Andrew Kambugu; Edward N. Janoff; Paul R. Bohjanen

Objective:HIV pathogenesis is characterized by destructive imbalances between virus-mediated immune damage, antiviral immune responses, and immune activation. We characterized the effects of successful antiretroviral therapy (ART) to identify the breadth and patterns of HIV-associated gene expression. Methods:In a prospective observational, longitudinal cohort study of 10 ART-naive Ugandans with AIDS (median 30 CD4+/μL), we measured mRNA gene profiles in peripheral blood using Affymetrix U133_Plus2.0 microarrays at 0, 2, 4, 8, and 24 weeks after ART initiation. Results:We identified 160 mRNA transcripts that were consistently down-regulated and 48 that were up-regulated after ART at each point over 24 weeks based on linear regression modeling (adjusted P < 0.05), Of these 208 transcripts, approximately half represent heretofore unrecognized ART-responsive genes and one-third have no known function. The down-regulated genes with known function encoded mediators of innate antiviral responses, including antiviral restriction factors, pattern recognition receptors, and interferon response proteins, and mediators of immune activation, cellular proliferation, and apoptosis. Conclusions:By using ART to block the viral stimulus, we identified transcripts involved in innate antiviral immunity, including antiviral restriction factors and pattern recognition receptors, that were not previously known to be induced by HIV infection.


Cells | 2016

Feedback Regulation of Kinase Signaling Pathways by AREs and GREs

Irina Vlasova-St. Louis; Paul R. Bohjanen

In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP.


RNA | 2015

Altered CELF1 binding to target transcripts in malignant T cells

Paul R. Bohjanen; Mai Lee Moua; Liang Guo; Ammanuel Taye; Irina Vlasova-St. Louis

The RNA-binding protein, CELF1, binds to a regulatory sequence known as the GU-rich element (GRE) and controls a network of mRNA transcripts that regulate cellular activation, proliferation, and apoptosis. We performed immunoprecipitation using an anti-CELF1 antibody, followed by identification of copurified transcripts using microarrays. We found that CELF1 is bound to a distinct set of target transcripts in the H9 and Jurkat malignant T-cell lines, compared with primary human T cells. CELF1 was not phosphorylated in resting normal T cells, but in malignant T cells, phosphorylation of CELF1 correlated with its inability to bind to GRE-containing mRNAs that served as CELF1 targets in normal T cells. Lack of binding by CELF1 to these mRNAs in malignant T cells correlated with stabilization and increased expression of these transcripts. Several of these GRE-containing transcripts that encode regulators of cell growth were also stabilized and up-regulated in primary tumor cells from patients with T-cell acute lymphoblastic leukemia. Interestingly, transcripts encoding numerous suppressors of cell proliferation that served as targets of CELF1 in malignant T cells, but not normal T cells, exhibited accelerated degradation and reduced expression in malignant compared with normal T cells, consistent with the known function of CELF1 to mediate degradation of bound transcripts. Overall, CELF1 dysfunction in malignant T cells led to the up-regulation of a subset of GRE-containing transcripts that promote cell growth and down-regulation of another subset that suppress cell growth, producing a net effect that would drive a malignant phenotype.


Archive | 2012

CELF1, a Multifunctional Regulator of Posttranscriptional Networks

Daniel Beisang; Paul R. Bohjanen; Irina Vlasova-St. Louis

In order to assure the precise utilization of genetic information, gene expression is regulated at the level of transcription as well as multiple post-transcriptional levels including splicing, transport, localization, mRNA stability, and translation [1],[2],[3],[4],[5],[6],[7]. During evolution, cells developed precise mechanisms to ensure that each transcript is appropriately stored, modified, translated or degraded, depending on the need for the mRNA or encoded protein by the cell. Steady-state protein levels within a cell correlate poorly with steady-state levels of mRNA, leading scientists to hypothesize that the gene expression is regulated at post-transcriptional levels [8]. Work over the past quarter century has resulted in the identification of unifying concepts in post-transcriptional regulation. One unifying concept states is that post-transcriptional regulation is mediated by two major molecular components: cis-acting regulatory sequence elements and trans-acting factors. Cisacting regulatory sequence elements are sub-sequences contained in the 5’ untranslated region (UTR), coding region, and 3’UTR of mRNA that are selectively recognized by a complementary set of one or more trans-acting factors to regulate post-transcriptional gene expression. Trans-acting factors include RNA-binding proteins (RBPs) and microRNAs (miRNAs) which are able to influence the fate of mRNA by controlling processes such as translation and mRNA degradation (reviewed in references [9],[10],[11],[12]). The combinatorial interplay between various miRNAs and RBPs binding to a given mRNA allows for the transcript specific regulation critical to many cellular decisions during development [13],[14],[15],[16] and in response to environmental stimuli (reviewed in references [17],[18],[19],[20],[21],[22]).


Nucleic Acids Research | 2018

The hepatitis C viral nonstructural protein 5A stabilizes growth-regulatory human transcripts

Liang Guo; Suresh D. Sharma; Jose D. Debes; Daniel Beisang; Bernd Rattenbacher; Irina Vlasova-St. Louis; Darin L. Wiesner; Craig E. Cameron; Paul R. Bohjanen

Abstract Numerous mammalian proto-oncogene and other growth-regulatory transcripts are upregulated in malignancy due to abnormal mRNA stabilization. In hepatoma cells expressing a hepatitis C virus (HCV) subgenomic replicon, we found that the viral nonstructural protein 5A (NS5A), a protein known to bind to viral RNA, also bound specifically to human cellular transcripts that encode regulators of cell growth and apoptosis, and this binding correlated with transcript stabilization. An important subset of human NS5A-target transcripts contained GU-rich elements, sequences known to destabilize mRNA. We found that NS5A bound to GU-rich elements in vitro and in cells. Mutation of the NS5A zinc finger abrogated its GU-rich element-binding and mRNA stabilizing activities. Overall, we identified a molecular mechanism whereby HCV manipulates host gene expression by stabilizing host transcripts in a manner that would promote growth and prevent death of virus-infected cells, allowing the virus to establish chronic infection and lead to the development of hepatocellular carcinoma.


PLOS ONE | 2018

Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-β signaling

Liang Guo; Jennifer A. Smith; Michelle Abelson; Irina Vlasova-St. Louis; Leslie A. Schiff; Paul R. Bohjanen

Reovirus infection induces dramatic changes in host mRNA expression. We utilized oligonucleotide microarrays to measure cellular mRNA decay rates in mock- or reovirus-infected murine L929 cells to determine if changes in host mRNA expression are a consequence of reovirus-induced alterations in cellular mRNA stability. Our analysis detected a subset of cellular transcripts that were coordinately induced and stabilized following infection with the reovirus isolates c87 and c8, strains that led to an inhibition of cellular translation, but not following infection with Dearing, a reovirus isolate that did not negatively impact cellular translation. The induced and stabilized transcripts encode multiple regulators of TGF- β signaling, including components of the Smad signaling network and apoptosis/survival pathways. The coordinate induction, through mRNA stabilization, of multiple genes that encode components of TGF-β signaling pathways represents a novel mechanism by which the host cell responds to reovirus infection.

Collaboration


Dive into the Irina Vlasova-St. Louis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Guo

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol J. Wilusz

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Craig E. Cameron

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge