Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Yu. Goryacheva is active.

Publication


Featured researches published by Irina Yu. Goryacheva.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2007

Immunochemical methods for rapid mycotoxin detection: evolution from single to multiple analyte screening: a review.

Irina Yu. Goryacheva; S. De Saeger; Sergei A. Eremin; C. Van Peteghem

This review focuses on recent developments in immunochemical methods for detection of mycotoxins, with a particular emphasis on simultaneous multiple analyte determination. This includes high-throughput instrumental analysis for the laboratory environment (microtitre plate enzyme-linked immunoabsorbant assay (ELISA), different kinds of immunosensors, fluorescence polarization immunoassay, and capillary electrophoretic immunoassay), as well as rapid visual tests for on-site testing (lateral-flow, dipstick, flow-through and column tests). For each type of immunoassay, perspectives for multiple analyte application are discussed and examples cited.


Chemistry: A European Journal | 2013

Anodic-stripping voltammetric immunoassay for ultrasensitive detection of low-abundance proteins using quantum dot aggregated hollow microspheres.

Bing Zhang; Dianping Tang; Irina Yu. Goryacheva; Reinhard Niessner; Dietmar Knopp

A new anodic-stripping voltammetric immunoassay protocol for detection of IgG1, as a model protein, was designed by using CdS quantum dot (QD) layer-by-layer assembled hollow microspheres (QDHMS) as molecular tags. Initially, monoclonal anti-human IgG1 specific antibodies were anchored on amorphous magnetic beads preferably selective to capture F(ab) of IgG1 analyte from the sample. For detection, monoclonal anti-human IgG1 (F(c)-specific) antibodies were covalently coupled to the synthesized QDHMS. In a sandwich-type immunoassay format, subsequent anodic-stripping voltammetric detection of cadmium released under acidic conditions from the coupled QDs was conducted at an in situ prepared mercury film electrode. The immunoassay combines highly efficient magnetic separation with signal amplification by the multilayered QD labels. The dynamic concentration range spanned from 1.0 fg mL(-1) to 1.0 μg mL(-1) of IgG1 with a detection limit of 0.1 fg mL(-1). The electrochemical immunoassay showed good reproducibility, selectivity, and stability. The analysis of clinical serum specimens revealed good accordance with the results obtained by an enzyme-linked immunosorbent assay method. The new immunoassay is promising for enzyme-free, and cost-effective analysis of low-abundance biomarkers.


Langmuir | 2014

Hydrophilic, Bright CuInS2 Quantum Dots as Cd-Free Fluorescent Labels in Quantitative Immunoassay

Elena S. Speranskaya; Natalia V. Beloglazova; Sofie Abé; Tangi Aubert; Philippe Smet; Dirk Poelman; Irina Yu. Goryacheva; Sarah De Saeger; Zeger Hens

We report on the synthesis of core-shell CuInS2/ZnS quantum dots (QDs) in organic solution, their encapsulation with a PEG-containing amphiphilic polymer, and the application of the resulting water-soluble QDs as fluorescent label in quantitative immunoassay. By optimizing the methods for core synthesis and shell growth, CuInS2/ZnS QDs were obtained with a quantum yield of 50% on average after hydrophilization. After conjugation with an aflatoxin B1-protein derivative, the obtained QDs were used as fluorescent labels in microplate immunoassay for the quantitative determination of the mycotoxin aflatoxin B1. QDs-based immunoassay showed higher sensitivity compared to enzyme-based immunoassay.


Journal of Chromatography A | 2008

Supramolecular solid-phase extraction of ibuprofen and naproxen from sewage based on the formation of mixed supramolecular aggregates prior to their liquid chromatographic/photometric determination.

Esther María Costi; Irina Yu. Goryacheva; María Dolores Sicilia; Soledad Rubio; Dolores Pérez-Bendito

Sorbents made up of sodium dodecyl sulphate (SDS) hemimicelles, formed onto gamma-alumina, were proposed for the quantitative and practically solvent-free solid-phase extraction (SPE) of ibuprofen and naproxen from sewage samples. The formation of drug-SDS mixed aggregates was proved by the pseudophase separation model and their composition as a function of the amount of drug was calculated. The overall hemimicellar SPE procedure consumed only 0.6 mL of methanol since non-organic solvent was required for cartridge conditioning and the drugs were completely eluted using 2 mL of a 0.3M NaOH:methanol (70:30, v/v) solution. Breakthrough volumes of around 0.75 L and above 1L were obtained for naproxen and ibuprofen, respectively. No clean-up steps were necessary for the determination of these drugs in sewage because the direct analysis of the eluates by liquid chromatography/UV was matrix effect-free. The identification of the analytes was based on retention times and UV spectra and it was confirmed by on-line fluorescence detection. The detection limits for naproxen and ibuprofen were 0.8 and 9 ng L(-1) in wastewater influents and 0.5 and 7 ng L(-1) in effluents, respectively. These limits were similar to or lower than those achieved by methods based on conventional sorbents (e.g. C(18)-silica or polymeric resins), which invariably require the evaporation of the eluates. The accuracy and precision of the proposed method were assessed by analysing influent and effluent wastewater samples spiked with 2 and 0.4 microg L(-1) of each analyte, respectively. The recoveries obtained and the corresponding standard deviations were in the ranges 93-101% and 2-9%. The method was applied to the determination of the target drugs in wastewater from three sewage treatment plants (STPs) in the south of Spain. The concentration of ibuprofen and naproxen ranged between 2.0 and 7.4 microg L(-1) and 0.9 and 3.3 microg L(-1) in influents and 0.4 and 1.4 microg L(-1) and 0.2 and 0.8 microg L(-1) in effluents, respectively.


Talanta | 2008

Gel-based immunoassay for non-instrumental detection of pyrene in water samples.

Irina Yu. Goryacheva; Natalia V. Beloglazova; Sergei A. Eremin; Dmitry A. Mikhirev; Reinhard Niessner; Dietmar Knopp

A new qualitative immunologically based tube test for non-instrumental detection of pyrene (PYR) in water samples was developed. The method combines the pre-concentration of analyte by immunoextraction and its detection by immunoassay using Sepharose 4B-immobilized IgG-fraction of a polyclonal anti-PYR antiserum (immunoaffinity gel) and 1-pyrenebutyric acid-horseradish peroxidase conjugate (PYR-BA-HRP). The immunoaffinity gel was placed in a standard 1-ml SPE column through which a 10-ml aliquot of water sample spiked with 10% acetonitrile was passed. Following, free antibody binding sites were detected by application of PYR-BA-HRP. Four minutes after addition of the chromogenic substrate the results were visually evaluated by occurring or stayed away blue colour development for negative and positive samples, respectively. Total time for assay was about 15 min for six samples. Under optimized conditions a cut-off level for pyrene of 0.04 ng ml(-1) was found. At this defined concentration, a set of spiked samples (n=175) was analyzed and very low rates of false negatives (1.2%) and false positives (4.6%) determined which fulfils the requirement set by Commission Decision 2002/657/EC for a screening method. No interference by other PAH compounds like naphthalene, fluoranthene, phenanthrene, anthracene, and benzo[a]pyrene at a concentration of 20 ng ml(-1), i.e., 500-fold excess compared to the defined cut-off level was observed. Different water types like surface water, tap water, bottled water, and melted snow were analyzed for PYR contamination by the proposed method and results confirmed by HPLC-FLD.


Biosensors and Bioelectronics | 2016

Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection.

Valentina V. Goftman; Tangi Aubert; Dries Vande Ginste; Rik Van Deun; Natalia V. Beloglazova; Zeger Hens; Sarah De Saeger; Irina Yu. Goryacheva

To create bright and stable fluorescent biolabels for immunoassay detection of mycotoxin deoxynivalenol in food and feed, CdSe/CdS/ZnS core-shell quantum dots (QDs) were encapsulated in silica nanoparticles through a water-in-oil reverse microemulsion process. The optical properties and stability of the obtained silica coated QDs (QD@SiO2), modified with amino, carboxyl and epoxy groups and stabilized with polyethylene glycol fragments, were characterized in order to assess their bioapplicability. The developed co-condensation techniques allowed maintaining 80% of the initial fluorescent properties and yielded stable fluorescent labels that could be easily activated and bioconjugated. Further, the modified QD@SiO2 were efficiently conjugated with antibodies and applied as a novel label in a microtiter plate based immunoassay and a quantitative column-based rapid immunotest for deoxynivalenol detection with IC50 of 473 and 20 ng/ml, respectively.


World Mycotoxin Journal | 2012

Immunochemical detection of masked mycotoxins: A short review

Irina Yu. Goryacheva; S. De Saeger

Mycotoxin derivatives that escape conventional analytical detection of parent (free) forms because their structure has been changed are designated masked mycotoxins. Masking phenomena are due to a defensive response of the host plant or can occur during food processing. Failure to detect masked mycotoxins will lead to a significant underestimation of the mycotoxin content of a particular sample. To date, mainly chromatographic methods were developed for masked mycotoxin determination and quantification. However, for fast screening, it is important to develop on-site methods for detection of masked and parent (free) forms. Although immunochemical methods could provide a simple and economical alternative to chromatography, their use for masked forms is only at the start of development. The key-point for antibody-based methods for masked mycotoxin determination is cross-reactivity of the specific antibody towards masked mycotoxins. If the antibody does not show meaningful affinity for masked forms, they will be latent, and the total content of this mycotoxin will be underestimated. If the antibody shows affinity for masked forms, the sum of free and masked forms will be determined. Currently, neither antibodies nor immuno-based methods were specifically developed for masked mycotoxins, but some enzyme-linked immunosorbent assay test-kits and immunoaffinity columns for mycotoxins were evaluated for their detection. This paper describes possible applications of antibody-based techniques for masked mycotoxin detection on the basis of recent literature.


Analytica Chimica Acta | 2012

A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples

Meng Yuan; Wei Sheng; Yan Zhang; Junping Wang; Yijin Yang; Shuguang Zhang; Irina Yu. Goryacheva; Shuo Wang

A gel-based non-instrumental immuno-affinity assay was developed for the rapid screening of chloramphenicol (CAP) in food samples with the limit of detection (LOD) of 1 μg L(-1). The immuno-affinity test column (IATC) consisted of a test layer containing anti-CAP antibody coupled gel, and a control layer with anti-HRP antibody coupled gel. Based on the direct competitive immuno-reaction and the horseradish peroxidase enzymatic reaction, the test results could be evaluated visually. Basically, blue color development represented the negative results, while the absence of color development represented the positive results. In this study, CAP spiked samples of raw milk, pasteurized milk, UHT milk, skimmed milk powder, acacia honey, date honey, fish and shrimp were tested. Little or none sample pretreatment was required for this assay. The whole procedure was completed within 10min. In conclusion, the gel-based immuno-affinity test is a simple, rapid, and promising on-site screening method for CAP residues in food samples, with no instrumental requirement.


Talanta | 2016

A fluorescent immunochromatographic strip test using Quantum Dots for fumonisins detection.

F. Di Nardo; Laura Anfossi; Cristina Giovannoli; Cinzia Passini; Valentina V. Goftman; Irina Yu. Goryacheva; Claudio Baggiani

A fluorescent immunochromatographic strip test (ICST) based on the use of Quantum Dots (QD) was developed and applied to detect fumonisins in maize samples. A limit of detection for fumonisin B1 of 2.8 µg L(-1) was achieved, with an analytical working range of 3-350 µg L(-1), corresponding to 30-3500 µg kg(-1) in maize flour samples, according with the extraction procedure. The time required to perform the analysis was 22 min, including sample preparation. Recovery values in the range from 91.4% to 105.4% with coefficients of variation not exceeding 5% were obtained for fortified and naturally contaminated maize flour samples. To evaluate the possible improvements due to the use of QD for ICST technology, we performed a direct comparison of the proposed QD-ICST to a gold nanoparticles- and a chemiluminescent-ICST previously developed for fumonisins detection, in which the same immunoreagents were employed.


ACS Applied Materials & Interfaces | 2016

Synthesis of hydrophilic CuInS2/ZnS quantum dots with different polymeric shells and study of their cytotoxicity and hemocompatibility

Elena S. Speranskaya; Chantal Sevrin; Sarah De Saeger; Zeger Hens; Irina Yu. Goryacheva; Christian Grandfils

In this work, there is a detailed description of the whole process of biocompatible CIS/ZnS QDs production. Special attention was paid to the stability of QDs against photooxidation. It was shown that Cu/In ratio greatly affected not only nanocrystals PLQYs but photostability as well. CIS/ZnS QDs with Cu/In = 1:4 ratio showed high photostability under UV illumination both in toluene and aqueous solutions. Meanwhile, photoluminescence of CIS/ZnS QDs with Cu/In = 1:1 ratio was completely quenched after several hours under UV illumination, though their initial QY was as high as 40% with peak maximum at 740 nm. QDs were transferred to water by polymer encapsulation and were subsequently modified with polyethers Jeffamines, cheap analogues of PEG-derivatives. Three types of hydrophilic QDs differing in size, PEG content, and surface charge were obtained for further investigation and comparison of their cytotoxicity and hemocompatibility. It was shown that both leucocytes size distribution and coagulation activation change after introduction of polyethers into QDs polymeric shell, while red blood cells and platelets size distribution as well as hemolysis rate did not show any different results among different QDs and the polymer itself. All three types of QDs showed only slight cytotoxicity. Confocal microscopy proves penetration of hydrophilic CIS/ZnS QDs inside cells, so the low QDs cytotoxocity cannot be explained by low cellular uptake of the QDs and indicated low QDs toxicity in general.

Collaboration


Dive into the Irina Yu. Goryacheva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gleb B. Sukhorukov

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge