Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iris I. van Swam is active.

Publication


Featured researches published by Iris I. van Swam.


Molecular Microbiology | 1997

Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis

Richard van Kranenburg; Joey D. Marugg; Iris I. van Swam; Norwin J. Willem; Willem M. de Vos

Lactococcus lactis strain NIZO B40 produces an extracellular phosphopolysaccharide containing galactose, glucose, and rhamnose. A 40 kb plasmid encoding exopolysaccharide production was isolated through conjugal transfer of total plasmid DNA from strain NIZO B40 to the plasmid‐free L. lactis model strain MG1614 and subsequent plasmid curing. A 12 kb region containing 14 genes with the order epsRXABCDEFGHIJKL was identified downstream of an iso‐IS982 element. The predicted gene products of epsABCDEFGHIJK show sequence homologies with gene products involved in exopolysaccharide, capsular polysaccharide, lipopolysaccharide, or teichoic acid biosynthesis of other bacteria. Transcriptional analysis of the eps gene cluster revealed that the gene cluster is transcribed as a single 12 kb mRNA. The transcription start site of the promoter was mapped upstream of the first gene epsR. The involvement of epsD in exopolysaccharide (EPS) biosynthesis was demonstrated through a single gene disruption rendering an exopolysaccharide‐deficient phenotype. Heterologous expression of epsD in Escherichia coli showed that its gene product is a glucosyltransferase linking the first sugar of the repeating unit to the lipid carrier.


Applied and Environmental Microbiology | 2005

Complete Sequences of Four Plasmids of Lactococcus lactis subsp. cremoris SK11 Reveal Extensive Adaptation to the Dairy Environment

Roland J. Siezen; Bernadet Renckens; Iris I. van Swam; Sander A. Peters; Richard van Kranenburg; Michiel Kleerebezem; Willem M. de Vos

ABSTRACT Lactococcus lactis strains are known to carry plasmids encoding industrially important traits. L. lactis subsp. cremoris SK11 is widely used by the dairy industry in cheese making. Its complete plasmid complement was sequenced and found to contain the plasmids pSK11A (10,372 bp), pSK11B (13,332 bp), pSK11L (47,165 bp), and pSK11P (75,814 bp). Six highly homologous repB-containing replicons were found, all belonging to the family of lactococcal theta-type replicons. Twenty-three complete insertion sequence elements segment the plasmids into numerous modules, many of which can be identified as functional units or containing functionally related genes. Plasmid-encoded functions previously known to reside on L. lactis SK11 plasmids were now mapped in detail, e.g., lactose utilization (lacR-lacABCDFEGX), the proteolytic system (prtM-prtP, pepO, pepF), and the oligopeptide permease system (oppDFBCA). Newly identified plasmid-encoded functions could facilitate the uptake of various cations, while the pabA and pabB genes could be essential for folate biosynthesis. A competitive advantage could be obtained by using the putative flavin adenine dinucleotide-dependent d-lactate dehydrogenase and oxalate:formate antiporter for enhanced ATP synthesis, while the activity of the predicted α-acetolactate decarboxylase may contribute to the formation of an additional electron sink. Various stress response proteins are plasmid encoded, which could enhance strain robustness. A substantial number of these “adaptation” genes have not been described before on L. lactis plasmids. Moreover, several genes were identified for the first time in L. lactis, possibly reflecting horizontal gene transfer.


Genome Biology | 2012

Microbiome dynamics of human epidermis following skin barrier disruption

Patrick L.J.M. Zeeuwen; Jos Boekhorst; Ellen H. van den Bogaard; Heleen D. de Koning; Peter Mc van de Kerkhof; Delphine M. Saulnier; Iris I. van Swam; Sacha A. F. T. van Hijum; Michiel Kleerebezem; Joost Schalkwijk; Harro M. Timmerman

BackgroundRecent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury.ResultsWe observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes.ConclusionsWe suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis.


Inflammatory Bowel Diseases | 2006

Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase

Wei Han; Annick Mercenier; Afifa Ait-Belgnaoui; Sonia Pavan; Florence Lamine; Iris I. van Swam; Michiel Kleerebezem; Christel Salvador-Cartier; Michael Hisbergues; Lionel Bueno; Vassilia Theodorou; J. Fioramonti

&NA; The use of superoxide dismutases (SODs) in inflammatory diseases is hampered by their short circulatory half‐life. To determine whether a bacterial supply of SOD into the colon might improve an experimental colitis, the effects of oral treatment with live recombinant lactic acid bacteria producing different amounts of SOD and those of colonic infusion of SOD were compared. Wistar rats were fitted with a catheter in the proximal colon through which TNBS was administered to induce colitis. Animals received a continuous intracolonic infusion of bovine SOD (40 U per rat per day) for 4 days after TNBS or were treated orally with live recombinant Lactococcus lactis or Lactobacillus plantarum strains (109 colony‐forming units (CFU)/d), producing or not producing SOD, for 4 days before and after TNBS. SOD activity of bacterial extracts was 0, 26, 74, and 624 units/109 CFU for L. plantarum, L. lactis, L. lactis SOD+, and L. plantarum SOD+, respectively. Four days after TNBS, macroscopic and microscopic damage, myeloperoxidase (MPO) activity, and nitrotyrosine immunostaining were evaluated. TNBS induced macroscopic and microscopic damages, an increase in MPO activity, and intense immunostaining for nitrotyrosine. Macroscopic damage and MPO activity were reduced by bovine SOD. These parameters and microscopic damages also were reduced by L. lactis, L. lactis SOD+, and L. plantarum SOD+, but not by L. plantarum. Nitrotyrosine immunostaining was attenuated after treatment with the 4 bacterial strains. Although not all of the anti‐inflammatory effects could be attributed directly to SOD, our results suggest that SOD‐producing lactic acid bacteria open a novel approach in inflammatory bowel disease treatment.


Applied and Environmental Microbiology | 2002

Effect of Different NADH Oxidase Levels on Glucose Metabolism by Lactococcus lactis: Kinetics of Intracellular Metabolite Pools Determined by In Vivo Nuclear Magnetic Resonance

Ana Rute Neves; A.R. Ramos; H.S. Costa; Iris I. van Swam; Jeroen Hugenholtz; Michiel Kleerebezem; Willem M. de Vos; Helena Santos

ABSTRACT Three isogenic strains of Lactococcus lactis with different levels of H2O-forming NADH oxidase activity were used to study the effect of oxygen on glucose metabolism: the parent strain L. lactis MG1363, a NOX− strain harboring a deletion of the gene coding for H2O-forming NADH oxidase, and a NOX+ strain with the NADH oxidase activity enhanced by about 100-fold. A comprehensive description of the metabolic events was obtained by using 13C nuclear magnetic resonance in vivo. The most noticeable results of this study are as follows: (i) under aerobic conditions the level of fructose 1,6-bisphosphate [Fru(1,6)P2] was lower than the level under anaerobic conditions, and the rate of Fru(1,6)P2 depletion was very high; (ii) the levels of 3-phosphoglycerate and phosphoenolpyruvate were considerably enhanced under aerobic conditions and significantly lower in the NOX− strain; and (iii) the glycolytic flux decreased in the presence of saturating levels of oxygen, but it was not altered in response to changes in the NADH oxidase activity. In particular, the observation that the glycolytic flux was not enhanced in the NOX+ strain indicated that glycolytic flux was not primarily determined by the level of NADH in the cell. The patterns of end products were identical for the NOX− and parent strains; in the NOX+ strain the carbon flux was diverted to the production of α-acetolactate-derived compounds, and at a low pH this strain produced diacetyl at concentrations up to 1.6 mM. The data were integrated with the goal of identifying the main regulatory aspects of glucose metabolism in the presence of oxygen.


ACS Chemical Biology | 2011

Fluorescence and Atomic Force Microscopy Imaging of Wall Teichoic Acids in Lactobacillus plantarum

Guillaume Andre; Marie Deghorain; Peter A. Bron; Iris I. van Swam; Michiel Kleerebezem; Pascal Hols; Yves F. Dufrêne

Although teichoic acids are major constituents of bacterial cell walls, little is known about the relationships between their spatial localization and their functional roles. Here, we used single-molecule atomic force microscopy (AFM) combined with fluorescence microscopy to image the distribution of wall teichoic acids (WTAs) in Lactobacillus plantarum, in relation with their physiological roles. Phenotype analysis of the wild-type strain and of mutant strains deficient for the synthesis of WTAs (ΔtagO) or cell wall polysaccharides (Δcps1-4) revealed that WTAs are required for proper cell elongation and cell division. Nanoscale imaging by AFM showed that strains expressing WTAs have a highly polarized surface morphology, the poles being much smoother than the side walls. AFM and fluorescence imaging with specific lectin probes demonstrated that the polarized surface structure correlates with a heterogeneous distribution of WTAs, the latter being absent from the surface of the poles. These observations indicate that the polarized distribution of WTAs in L. plantarum plays a key role in controlling cell morphogenesis (surface roughness, cell shape, elongation, and division).


PLOS ONE | 2012

L. plantarum, L. salivarius, and L. lactis Attenuate Th2 Responses and Increase Treg Frequencies in Healthy Mice in a Strain Dependent Manner

Maaike J. Smelt; Bart J. de Haan; Peter A. Bron; Iris I. van Swam; Marjolein Meijerink; Jerry M. Wells; Marijke M. Faas; Paul de Vos

Many studies on probiotics are aimed at restoring immune homeostasis in patients to prevent disease recurrence or reduce immune-mediated pathology. Of equal interest is the use of probiotics in sub-clinical situations, which are characterized by reduced immune function or low-grade inflammation, with an increased risk of infection or disease as a consequence. Most mechanistic studies focus on the use of probiotics in experimental disease models, which may not be informative for these sub-clinical conditions. To gain better understanding of the effects in the healthy situation, we investigated the immunomodulatory effects of two Lactobacillus probiotic strains, i.e. L. plantarum WCFS1 and L. salivarius UCC118, and a non-probiotic lactococcus strain, i.e. L. lactis MG1363, in healthy mice. We studied the effect of these bacteria on the systemic adaptive immune system after 5 days of administration. Only L. plantarum induced an increase in regulatory CD103+ DC and regulatory T cell frequencies in the spleen. However, all three bacterial strains, including L. lactis, reduced specific splenic T helper cell cytokine responses after ex vivo restimulation. The effect on IFN-γ, IL5, IL10, and IL17 production by CD4+ and CD8+ T cells was dependent on the strain administered. A shared observation was that all three bacterial strains reduced T helper 2 cell frequencies. We demonstrate that systemic immunomodulation is not only observed after treatment with probiotic organisms, but also after treatment with non-probiotic bacteria. Our data demonstrate that in healthy mice, lactobacilli can balance T cell immunity in favor of a more regulatory status, via both regulatory T cell dependent and independent mechanisms in a strain dependent manner.


Microbial Cell Factories | 2012

Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling.

Daniela M. Remus; Richard van Kranenburg; Iris I. van Swam; Nico Taverne; Roger S. Bongers; Michiel Wels; Jerry M. Wells; Peter A. Bron; Michiel Kleerebezem

BackgroundBacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well described. Therefore, improved knowledge on these molecules is potentially of great importance to understand the strain-specific and proposed beneficial modes of probiotic action.ResultsThe Lactobacillus plantarum WCFS1 genome encodes 4 clusters of genes that are associated with surface polysaccharide production. Two of these clusters appear to encode all functions required for capsular polysaccharide formation (cps2A-J and cps4A-J), while the remaining clusters are predicted to lack genes encoding chain-length control functions and a priming glycosyl-transferase (cps1A-I and cps3A-J). We constructed L. plantarum WCFS1 gene deletion mutants that lack individual (Δcps1A-I, Δcps2A-J, Δcps3A-J and Δcps4A-J) or combinations of cps clusters (Δcps1A-3J and Δcps1A-3I, Δcps4A-J) and assessed the genome wide impact of these mutations by transcriptome analysis. The cps cluster deletions influenced the expression of variable gene sets in the individual cps cluster mutants, but also considerable numbers of up- and down-regulated genes were shared between mutants in cps cluster 1 and 2, as well as between mutant in cps clusters 3 and 4. Additionally, the composition of overall cell surface polysaccharide fractions was altered in each mutant strain, implying that despite the apparent incompleteness of cps1A-I and cps3A-J, all clusters are active and functional in L. plantarum. The Δcps1A-I strain produced surface polysaccharides in equal amounts as compared to the wild-type strain, while the polysaccharides were characterized by a reduced molar mass and the lack of rhamnose. The mutants that lacked functional copies of cps2A-J, cps3A-J or cps4A-J produced decreased levels of surface polysaccharides, whereas the molar mass and the composition of polysaccharides was not affected by these cluster mutations. In the quadruple mutant, the amount of surface polysaccharides was strongly reduced. The impact of the cps cluster mutations on toll-like receptor (TLR)-mediated human nuclear factor (NF)-κB activation in host cells was evaluated using a TLR2 reporter cell line. In comparison to a L. plantarum wild-type derivative, TLR2 activation remained unaffected by the Δcps1A-I and Δcps3A-J mutants but appeared slightly increased after stimulation with the Δcps2A-J and Δcps4A-J mutants, while the Δcps1A-3J and Δcps1A-3J, Δcps4A-J mutants elicited the strongest responses and clearly displayed enhanced TLR2 signaling.ConclusionsOur study reveals that modulation of surface glycan characteristics in L. plantarum highlights the role of these molecules in shielding of cell envelope embedded host receptor ligands. Although the apparently complete cps clusters (cps2A-J and cps4A-J) contributed individually to this shielding, the removal of all cps clusters led to the strongest signaling enhancement. Our findings provide new insights into cell surface glycan biosynthesis in L. plantarum, which bears relevance in the context of host-cell signaling by probiotic bacteria.


Applied and Environmental Microbiology | 2004

Selection and Characterization of Conditionally Active Promoters in Lactobacillus plantarum, Using Alanine Racemase as a Promoter Probe

Peter A. Bron; Sally M. Hoffer; Iris I. van Swam; Willem M. de Vos; Michiel Kleerebezem

ABSTRACT This paper describes the use of the alr gene, encoding alanine racemase, as a promoter-screening tool for the identification of conditional promoters in Lactobacillus plantarum. Random fragments of the L. plantarum WCFS1 genome were cloned upstream of the promoterless alr gene of Lactococcus lactis in a low-copy-number plasmid vector. The resulting plasmid library was introduced into an L. plantarum Δalr strain (MD007), and 40,000 clones were selected. The genome coverage of the library was estimated to be 98%, based on nucleotide insert sequence and restriction analyses of the inserts of randomly selected clones. The library was screened for clones that were capable of complementing the d-alanine auxotroph phenotype of MD007 in media containing up to 10, 100, or 300 μg of the competitive Alr inhibitor d-cycloserine per ml. Western blot analysis with polyclonal antibodies raised against lactococcal Alr revealed that the Alr production level required for growth increased in the presence of increasing concentrations of d-cycloserine, adding a quantitative factor to the primarily qualitative nature of the alr complementation screen. Screening of the alr complementation library for clones that could grow only in the presence of 0.8 M NaCl resulted in the identification of eight clones that upon Western blot analysis showed significantly higher Alr production under high-salt conditions than under low-salt conditions. These results established the effectiveness of the alanine racemase complementation screening method for the identification of promoters on their conditional or constitutive activity.


Microbial Cell Factories | 2012

Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching

Peter A. Bron; Satoru Tomita; Iris I. van Swam; Daniela M. Remus; Marjolein Meijerink; Michiel Wels; Sanae Okada; Jerry M. Wells; Michiel Kleerebezem

BackgroundSpecific strains of Lactobacillus plantarum are marketed as health-promoting probiotics. The role and interplay of cell-wall compounds like wall- and lipo-teichoic acids (WTA and LTA) in bacterial physiology and probiotic-host interactions remain obscure. L. plantarum WCFS1 harbors the genetic potential to switch WTA backbone alditol, providing an opportunity to study the impact of WTA backbone modifications in an isogenic background.ResultsThrough genome mining and mutagenesis we constructed derivatives that synthesize alternative WTA variants. The mutants were shown to completely lack WTA, or produce WTA and LTA that lack D-Ala substitution, or ribitol-backbone WTA instead of the wild-type glycerol-containing backbone. DNA micro-array experiments established that the tarIJKL gene cluster is required for the biosynthesis of this alternative WTA backbone, and suggest ribose and arabinose are precursors thereof. Increased tarIJKL expression was not observed in any of our previously performed DNA microarray experiments, nor in qRT-PCR analyses of L. plantarum grown on various carbon sources, leaving the natural conditions leading to WTA backbone alditol switching, if any, to be identified. Human embryonic kidney NF-κB reporter cells expressing Toll like receptor (TLR)-2/6 were exposed to purified WTAs and/or the TA mutants, indicating that WTA is not directly involved in TLR-2/6 signaling, but attenuates this signaling in a backbone independent manner, likely by affecting the release and exposure of immunomodulatory compounds such as LTA. Moreover, human dendritic cells did not secrete any cytokines when purified WTAs were applied, whereas they secreted drastically decreased levels of the pro-inflammatory cytokines IL-12p70 and TNF-α after stimulation with the WTA mutants as compared to the wild-type.ConclusionsThe study presented here correlates structural differences in WTA to their functional characteristics, thereby providing important information aiding to improve our understanding of molecular host-microbe interactions and probiotic functionality.

Collaboration


Dive into the Iris I. van Swam's collaboration.

Top Co-Authors

Avatar

Michiel Kleerebezem

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Peter A. Bron

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Willem M. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jerry M. Wells

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marjolein Meijerink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Richard van Kranenburg

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Bart J. de Haan

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maaike J. Smelt

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Marijke M. Faas

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge