Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iris J. Edwards is active.

Publication


Featured researches published by Iris J. Edwards.


Cancer Letters | 2008

Multi-targeted therapy of cancer by omega-3 fatty acids ☆

Isabelle M. Berquin; Iris J. Edwards; Yong Q. Chen

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids necessary for human health. Currently, the Western diet contains a disproportionally high amount of n-6 PUFAs and low amount of n-3 PUFAs, and the resulting high n-6/n-3 ratio is thought to contribute to cardiovascular disease, inflammation, and cancer. Studies in human populations have linked high consumption of fish or fish oil to reduced risk of colon, prostate, and breast cancer, although other studies failed to find a significant association. Nonetheless, the available epidemiological evidence, combined with the demonstrated effects of n-3 PUFAs on cancer in animal and cell culture models, has motivated the development of clinical interventions using n-3 PUFAs in the prevention and treatment of cancer, as well as for nutritional support of cancer patients to reduce weight loss and modulate the immune system. In this review, we discuss the rationale for using long-chain n-3 PUFAs in cancer prevention and treatment and the challenges that such approaches pose in the design of clinical trials.


Journal of Clinical Investigation | 2007

Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids

Isabelle M. Berquin; Younong Min; Ruping Wu; Jiansheng Wu; Donna Perry; J. Mark Cline; Michael J. Thomas; Todd Thornburg; George Kulik; Adrienne J. Smith; Iris J. Edwards; Ralph B. D’Agostino; Hao Zhang; Hong Wu; Jing X. Kang; Yong Q. Chen

Although a causal role of genetic alterations in human cancer is well established, it is still unclear whether dietary fat can modulate cancer risk in a predisposed population. Epidemiological studies suggest that diets rich in omega-3 polyunsaturated fatty acids reduce cancer incidence. To determine the influence of fatty acids on prostate cancer risk in animals with a defined genetic lesion, we used prostate-specific Pten-knockout mice, an immune-competent, orthotopic prostate cancer model, and diets with defined polyunsaturated fatty acid levels. We found that omega-3 fatty acids reduced prostate tumor growth, slowed histopathological progression, and increased survival, whereas omega-6 fatty acids had opposite effects. Introducing an omega-3 desaturase, which converts omega-6 to omega-3 fatty acids, into the Pten-knockout mice reduced tumor growth similarly to the omega-3 diet. Tumors from mice on the omega-3 diet had lower proportions of phosphorylated Bad and higher apoptotic indexes compared with those from mice on omega-6 diet. Knockdown of Bad eliminated omega-3-induced cell death, and introduction of exogenous Bad restored the sensitivity to omega-3 fatty acids. Our data suggest that modulation of prostate cancer development by polyunsaturated fatty acids is mediated in part through Bad-dependent apoptosis. This study highlights the importance of gene-diet interactions in prostate cancer.


Cancer Research | 2008

Peroxisome Proliferator-Activated Receptor γ–Mediated Up-regulation of Syndecan-1 by n-3 Fatty Acids Promotes Apoptosis of Human Breast Cancer Cells

Haiguo Sun; Isabelle M. Berquin; Rick T. Owens; Joseph T. O'Flaherty; Iris J. Edwards

Diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFA) may protect against breast cancer but biochemical mechanisms are unclear. Our studies showed that the n-3 fatty acid docosahexaenoic acid (DHA) up-regulated syndecan-1 (SDC-1) in human breast cancer cells, and we tested the hypothesis that DHA-mediated up-regulation of SDC-1 induces apoptosis. DHA was delivered to MCF-7 cells by n-3 PUFA-enriched low-density lipoproteins (LDL) or by albumin in the presence or absence of SDC-1 small interfering RNA. The n-3 PUFA induced apoptosis, which was blocked by SDC-1 silencing. We also confirmed that SDC-1 up-regulation and apoptosis promotion by n-3 PUFA was mediated by peroxisome proliferator-activated receptor gamma (PPAR gamma). Using a luciferase gene driven by either a PPAR response element or a DR-1 site present in the SDC-1 promoter, reporter activities were enhanced by n-3 LDL, DHA, and PPAR gamma agonist, whereas activity of a luciferase gene placed downstream of a mutant DR-1 site was unresponsive. Cotransfection with dominant-negative PPAR gamma DNA eliminated the increase in luciferase activity. These data provide strong evidence that SDC-1 is a molecular target of n-3 PUFA in human breast cancer cells through activation of PPAR gamma and that n-3 PUFA-induced apoptosis is mediated by SDC-1. This provides a novel mechanism for the chemopreventive effects of n-3 PUFA in breast cancer.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1995

Differentiated Macrophages Synthesize a Heparan Sulfate Proteoglycan and an Oversulfated Chondroitin Sulfate Proteoglycan That Bind Lipoprotein Lipase

Iris J. Edwards; Hongzhi Xu; Joseph C. Obunike; Ira J. Goldberg; William D. Wagner

Lipoprotein lipase (LpL), which facilitates lipoprotein uptake by macrophages, associates with the cell surface by binding to proteoglycans (PGs). Studies were designed to identify and characterize specific PGs that serve as receptors for LpL and to examine effects of cell differentiation on LpL binding. PG synthesis was examined by radiolabeling THP-1 monocytes and macrophages (a cell line originally derived from a patient with acute monocytic leukemia) with [35S]sodium sulfate and [3H]serine or [3H]glucosamine. Radiolabeled PGs isolated from the cell surface were purified by chromatography and identified as chondroitin-4-sulfate (CS) PG and heparan sulfate (HS) PG. A sixfold increase in CSPG and an 11-fold increase in HSPG accompanied cell differentiation. Whereas HS glycosaminoglycan chains from both monocytes and macrophages were 7.5 kD in size, CS chains increased in size from 17 kD to 36 kD with cell differentiation, and contained hexuronyl N-acetylgalactosamine-4,6-di-O sulfate disaccharides. LpL binding was sevenfold higher to differentiated cells, and affinity chromatography demonstrated that two cell surface PGs bound to LpL: HSPG and the oversulfated CSPG produced only by differentiated cells. We conclude that differentiation-associated changes in cell surface PG of human macrophages have functional consequences that could increase the atherogenic potential of the cells.


Cancer and Metastasis Reviews | 2007

Dietary fat’gene interactions in cancer

Yong Q. Chen; Iris J. Edwards; Steven J. Kridel; Todd Thornburg; Isabelle M. Berquin

Epidemiologic studies have suggested for decades an association between dietary fat and cancer risk. A large body of work performed in tissue culture and xenograft models of cancer supports an important role of various types of fat in modulating the cancer phenotype. Yet, the molecular mechanisms underlining the effects of fat on cancer initiation and progression are largely unknown. The relationships between saturated fat, polyunsaturated fat, cholesterol or phytanic acid with cancer have been reviewed respectively. However, few have considered the relationship between all of these fats and cancer. The purpose of this review is to present a more cohesive view of dietary fat’gene interactions, and outline a working hypothesis of the intricate connection between fat, genes and cancer.


Atherosclerosis | 1987

Artery wall derived proteoglycan-plasma lipoprotein interaction: lipoprotein binding properties of extracted proteoglycans.

Rhenda H. Steele; William D. Wagner; H.Alan Rowe; Iris J. Edwards

Artery proteoglycan-lipoprotein binding characteristics were determined using intact, high molecular weight chondroitin sulfate proteoglycans (CS-PG) isolated from grossly appearing normal aortas of atherosclerosis susceptible WC-2 pigeons and plasma lipoproteins from normolipemic, randomly bred White Carneau pigeons. Optimum formation of particulate proteoglycan-lipoprotein complexes occurred in 5 mM Tris, 6 mM KCl, 4 mM CaCl2, 1 mM MgSO4, pH 7.2. The binding of CS-PG was specific for low density lipoprotein (LDL) and not high density lipoprotein (HDL). The relative importance of the intact monomeric structure of the PG was suggested in studies where glycosaminoglycan chains isolated from the PG monomer possessed less than 1% of the binding reactivity of the intact PG. The core protein prepared from the CS-PG monomer formed no measurable particulate complex.


Carcinogenesis | 2011

Omega-3 fatty acids induce apoptosis in human breast cancer cells and mouse mammary tissue through syndecan-1 inhibition of the MEK-Erk pathway

Haiguo Sun; Yunping Hu; Zhennan Gu; Rick T. Owens; Yong Q. Chen; Iris J. Edwards

Human epidemiological studies have shown that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFA) are associated with a lower incidence of cancers including breast cancer. Our previous studies showed that the n-3 PUFA, docosahexaenoic acid (DHA), upregulated syndecan-1 (SDC-1) expression to induce apoptosis in the human breast cancer cell line MCF-7. We now present evidence of a signaling pathway that is impacted by SDC-1 in these cells and in mouse mammary tissues to result in apoptosis. In MCF-7 cells and SK-BR-3 cells, DHA and a SDC-1 ectodomain impaired signaling of the p44/42 mitogen-activated protein kinase (MAPK) pathway by inhibiting the phosphorylation of MAPK/Erk (MEK)/extracellular signal-regulated kinase (Erk) and Bad to induce apoptosis. SDC-1 siRNA significantly enhanced phosphorylation of these signal molecules and blocked the inhibitory effects of DHA on their phosphorylation. SDC-1 siRNA diminished apoptosis of MCF-7 cells, an effect that was markedly blocked by MEK inhibitor, PD98059. In vivo studies used (i) Fat-1 mice, a genetic model able to convert n-6 to n-3 PUFA to result in higher SDC-1 levels in Fat-1 mammary tissue compared with that of wild-type (wt) mice. Phosphorylation of MEK, Erk and Bad was lower in the Fat-1 versus wt tissue and (ii) SDC-1(-/-) mice that demonstrated markedly higher levels of phosphorylated MEK, Erk and Bad in mammary gland tissue compared with those of SDC(+/+) mice. These data elucidate a pathway whereby SDC-1, upregulated by DHA, induces apoptosis in breast cancer cells through inhibition of MEK/Erk/Bad signaling.


Cancer Research | 2005

Omega-3 Polyunsaturated Fatty Acids Regulate Syndecan-1 Expression in Human Breast Cancer Cells

Haiguo Sun; Isabelle M. Berquin; Iris J. Edwards

Human epidemiologic studies and animal model studies support a role for n-3 polyunsaturated fatty acids (n-3 PUFA) in prevention or inhibition of breast cancer. However, mechanisms for this protection remain unclear. Syndecan-1 is a heparan sulfate proteoglycan, expressed on the surface of mammary epithelial cells and known to regulate many biological processes, including cytoskeletal organization, growth factor signaling, and cell-cell adhesion. We studied effects of n-3 PUFA on syndecan-1 expression in human mammary cell lines. PUFA were delivered to cells by low-density lipoproteins (LDL) isolated from the plasma of monkeys fed diets enriched in fish oil (n-3 PUFA) or linoleic acid (n-6 PUFA). Proteoglycan synthesis was measured by incorporation of [35S]-sodium sulfate. No effect of either LDL was observed in nontumorigenic MCF-10A cells, whereas in MCF-7 breast cancer cells, treatment with n-3-enriched LDL but not n-6-enriched LDL resulted in significantly greater synthesis of a proteoglycan identified by immunoprecipitation as syndecan-1. Using real-time reverse transcription-PCR (RT-PCR), it was shown that n-3-enriched LDL significantly increased the expression of syndecan-1 mRNA in a dose-dependent manner and maximal effective time at 8 hours of treatment. The effect was mimicked by an agonist for peroxisome proliferator-activated receptor gamma (PPARgamma) and eliminated by the presence of PPARgamma antagonist suggesting a role for PPARgamma in syndecan enhancement. Our studies show that n-3 LDL modifies the production of syndecan-1 in human breast cancer cells and suggest that biological processes regulated by syndecan-1 may be modified through LDL delivery of n-3 PUFA.


Cancer and Metastasis Reviews | 2011

Polyunsaturated fatty acid metabolism in prostate cancer

Isabelle M. Berquin; Iris J. Edwards; Steven J. Kridel; Yong Q. Chen

Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.


Clinical Cancer Research | 2004

Differential Effects of Delivery of Omega-3 Fatty Acids to Human Cancer Cells by Low-Density Lipoproteins versus Albumin

Iris J. Edwards; Isabelle M. Berquin; Haiguo Sun; Joseph T. O'Flaherty; Larry W. Daniel; Michael J. Thomas; Lawrence L. Rudel; Robert L. Wykle; Yong Q. Chen

Purpose: Omega-3 (n-3) fatty acids (FA) have been proposed to confer tumor-inhibitory properties. In vivo, dietary FA are delivered to tumor cells by two main routes: low-density lipoproteins (LDL) and albumin complexes. High FA concentration in LDL and up-regulation of LDL receptors in tumor cells suggest that the LDL receptor pathway may be the major route for FA delivery. We compared effects of n-3FA delivered to human cancer cells by LDL and albumin. Experimental Design: LDL was isolated from plasma of African Green monkeys fed diets enriched in fish oil (n-3 FA) or linoleic acid (n-6FA) and used to deliver FA to MCF-7 and PC3 cancer cells. Cell proliferation, apoptosis, and changes in global gene expression were monitored. Results: Both LDL and albumin were effective in delivering FA to tumor cells and modifying the composition of cell phospholipids. The molar ratio of 20:4 (n-6) to 20:5 (n-3) in phosphatidylcholine and phosphatidylethanolamine was profoundly decreased. Although cell phospholipids were similarly modified by LDL and albumin-delivered FA, effects on cell proliferation and on transcription were markedly different. LDL-delivered n-3 FA were more effective at inhibiting cell proliferation and inducing apoptosis. Expression microarray profiling showed that a significantly higher number of genes were regulated by LDL-delivered than albumin-delivered n-3 FA with little overlap between the two sets of genes. Conclusions: These results show the importance of the LDL receptor pathway in activating molecular mechanisms responsible for the tumor inhibitory properties of n-3FA.

Collaboration


Dive into the Iris J. Edwards's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiguo Sun

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar

Michael J. Thomas

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Joseph T. O'Flaherty

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William T. Cefalu

American Diabetes Association

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge