Iris K.M. Yu
Hong Kong Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iris K.M. Yu.
Bioresource Technology | 2017
Iris K.M. Yu; Daniel C.W. Tsang
Conversion of biomass waste to hydroxymethylfurfural (HMF), a value-added platform chemical, has captured great research interests driven by the economic and environmental incentives. This review evaluates the recent development of biomass conversion systems for high HMF yield and selectivity, with a focus on the performance of emerging catalysts and solvents from a mechanistic view. We highlight that the ratio and strength of Brønsted and Lewis acid in bifunctional catalyst are critical for maximizing HMF production by selective improvement in the kinetics of desirable reactions (hydrolysis, isomerization, and dehydration) over undesirable reactions (rehydration, polymerization). The characteristics of solvent mixture such as functional groups and speciation govern the reactivity of substrate towards desirable reactions and stability of HMF and intermediates against side reactions. Research efforts to unravel the interactions among co-catalysts/co-solvents and between catalysts and solvents are encouraged, thereby engineering a synergistic conversion system for biomass valorization.
Bioresource Technology | 2016
Iris K.M. Yu; Daniel C.W. Tsang; Alex C.K. Yip; Season S. Chen; Yong Sik Ok; Chi Sun Poon
This study aimed to transform food waste into a value-added chemical, hydroxymethylfurfural (HMF), and unravel the tangled effects induced by the metal catalysts on each single step of the successive conversion pathway. The results showed that using cooked rice and bread crust as surrogates of starch-rich food waste, yields of 8.1-9.5% HMF and 44.2-64.8% glucose were achieved over SnCl4 catalyst. Protons released from metal hydrolysis and acidic by-products rendered Brønsted acidity to catalyze fructose dehydration and hydrolysis of glycosidic bond. Lewis acid site of metals could facilitate both fructose dehydration and glucose isomerization via promoting the rate-limiting internal hydride shift, with the catalytic activity determined by its electronegativity, electron configuration, and charge density. Lewis acid site of a higher valence also enhanced hydrolysis of polysaccharide. However, the metals also catalyzed undesirable polymerization possibly by polarizing the carbonyl groups of sugars and derivatives, which should be minimized by process optimization.
Bioresource Technology | 2017
Xinni Xiong; Iris K.M. Yu; Leichang Cao; Daniel C.W. Tsang; Shicheng Zhang; Yong Sik Ok
This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (-SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.
Bioresource Technology | 2017
Iris K.M. Yu; Daniel C.W. Tsang; Alex C.K. Yip; Season S. Chen; Lei Wang; Yong Sik Ok; Chi Sun Poon
This study aimed to maximize the valorization of bread waste, a typical food waste stream, into hydroxymethylfurfural (HMF) by improving our kinetic understanding. The highest HMF yield (30mol%) was achieved using SnCl4 as catalyst, which offered strong derived Brønsted acidity and moderate Lewis acidity. We evaluated the kinetic balance between these acidities to facilitate faster desirable reactions (i.e., hydrolysis, isomerization, and dehydration) relative to undesirable reactions (i.e., rehydration and polymerization). Such catalyst selectivity of SnCl4, AlCl3, and FeCl3 was critical in maximizing HMF yield. Higher temperature made marginal advancement by accelerating the undesirable reactions to a similar extent as the desirable pathways. The polymerization-induced metal-impregnated high-porosity carbon was a possible precursor of biochar-based catalyst, further driving up the economic potential. Preliminary economic analysis indicated a net gain of USD 43-236 per kilogram bread waste considering the thermochemical-conversion cost and chemical-trading revenue.
Bioresource Technology | 2017
Iris K.M. Yu; Daniel C.W. Tsang; Season S. Chen; Lei Wang; Andrew J. Hunt; James Sherwood; Karine De Oliveira Vigier; François Jérôme; Yong Sik Ok; Chi Sun Poon
Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl4 as the catalyst. The overall rate of the process was the fastest in ACN/H2O and acetone/H2O, followed by DMSO/H2O and THF/H2O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H2O and acetone/H2O. The constant HMF maxima (26-27mol%) in ACN/H2O, acetone/H2O, and DMSO/H2O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H2O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion.
Bioresource Technology | 2018
Season S. Chen; Lei Wang; Iris K.M. Yu; Daniel C.W. Tsang; Andrew J. Hunt; François Jérôme; Shicheng Zhang; Yong Sik Ok; Chi Sun Poon
This study aims to produce levulinic acid (LA) from paper towel waste in environment-friendly and economically feasible conditions, and evaluate the difference using solid and aqueous Brønsted acids. Direct dehydration of glucose to LA required sufficiently strong Brønsted acidity, where Amberlyst 36 demonstrated rapid production of approximately 30Cmol% of LA in 20min. However, the maximum yield of LA was limited by mass transfer. In contrast, the yield of LA gradually increased to over 40Cmol% in 1M H2SO4 at 150°C in 60min. The SEM images revealed the conversion in dilute acids under microwave at 150°C resulting in swelling structures of cellulose, which were similar to the pre-treatment process with concentrated acids. Further increase in reaction temperature to 200°C significantly shortened the reaction time from 60 to 2.5min, which saved the energy cost as revealed in preliminary cost analysis.
Bioresource Technology | 2018
Leichang Cao; Iris K.M. Yu; Season S. Chen; Daniel C.W. Tsang; Lei Wang; Xinni Xiong; Shicheng Zhang; Yong Sik Ok; Eilhann E. Kwon; Hocheol Song; Chi Sun Poon
Sulfonated biochar derived from forestry wood waste was employed for the catalytic conversion of starch-rich food waste (e.g., bread) into 5-hydroxymethylfurfural (HMF). Chemical and physical properties of catalyst were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and elemental analysis. The conversion of HMF was investigated via controlling the reaction parameters such as catalyst loading, temperature, and reaction time. Under the optimum reaction conditions the HMF yield of 30.4 Cmol% (i.e., 22 wt% of bread waste) was achieved in the mixture of dimethylsulfoxide (DMSO)/deionized-water (DIW) at 180 °C in 20 min. The effectiveness of sulfonated biochar catalyst was positively correlated to the density of strong/weak Brønsted acidity (SO3H, COOH, and OH groups) and inversely correlated to humins content on the surface. With regeneration process, sulfonated biochar catalyst displayed excellent recyclability for comparable HMF yield from bread waste over five cycles.
Science of The Total Environment | 2018
Sanjay K. Mohanty; Renan Valenca; Alexander W. Berger; Iris K.M. Yu; Xinni Xiong; Trenton M. Saunders; Daniel C.W. Tsang
Low impact development (LID) systems are increasingly used to manage stormwater, but they have limited capacity to treat stormwater-a resource to supplement existing water supply in water-stressed urban areas. To enhance their pollutant removal capacity, infiltration-based LID systems can be augmented with natural or engineered geomedia that meet the following criteria: they should be economical, readily available, and have capacity to remove a wide range of stormwater pollutants in conditions expected during intermittent infiltration of stormwater. Biochar, a carbonaceous porous co-product of waste biomass pyrolysis/gasification, meets all these criteria. Biochar can adsorb pollutants, improve water-retention capacity of soil, retain and slowly release nutrients for plant uptake, and help sustain microbiota in soil and plants atop; all these attributes could help improve removal of contaminants in stormwater treatment systems. This article discusses contaminant removal mechanisms by biochar, summarizes specific biochar properties that enhance targeted contaminants removal from stormwater, and identifies challenges and opportunities to retrofit biochar in LID to optimize stormwater treatment.
Green Chemistry | 2018
Iris K.M. Yu; Daniel C.W. Tsang; Alex C.K. Yip; Andrew J. Hunt; James Sherwood; Jin Shang; Hocheol Song; Yong Sik Ok; Chi Sun Poon
Two green solvents, namely propylene carbonate (PC) and γ-valerolactone (GVL), were examined as co-solvents in the conversion of bread waste to hydroxymethylfurfural (HMF) over SnCl4 as the catalyst under microwave heating at 120 °C, and their performances were compared with water and acetone as a common solvent. The results showed that a HMF yield of ∼20 mol% was achieved at 7.5 and 20 min in the PC/H2O and GVL/H2O (1 : 1 v/v) systems, respectively, implying that the tandem reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) were efficient. The green systems played a critical role in maintaining effective Lewis acid sites, i.e., Sn4+, to a greater extent compared with acetone/H2O and water, where loss of Sn4+ from the liquid phase to colloidal SnO2 particles via hydrolysis was evidenced by X-ray diffraction analysis. In comparison, the utilisation of glucose (47–59 mol% from bread starch within 10 min) appeared as the rate-limiting step in the acetone/H2O and water systems. When comparing PC/H2O with GVL/H2O, the kinetics of overall conversion in the former was more favourable, which was associated with the high in-vessel pressure developed via liberation of CO2 from PC. In addition, dipole moment and dielectric constant of the solvents may also account for their respective performance. This study elucidates the multiple roles of the solvents and their interplay with the catalysts, and advocates the application of green solvents to facilitate catalytic conversion of biomass with a lower energy requirement.
Bioresource Technology | 2018
Leichang Cao; Iris K.M. Yu; Daniel C.W. Tsang; Shicheng Zhang; Yong Sik Ok; Eilhann E. Kwon; Hocheol Song; Chi Sun Poon
The catalytic activity of engineered biochar was scrutinized for generation of glucose and hydroxymethylfurfural (HMF) from starch-rich food waste (bread, rice, and spaghetti). The biochar catalysts were synthesized by chemical activation of pinewood sawdust with phosphoric acid at 400-600 °C. Higher activation temperatures enhanced the development of porosity and acidity (characterized by COPO3 and CPO3 surface groups), which imparted higher catalytic activity of H3PO4-activated biochar towards starch hydrolysis and fructose dehydration. Positive correlations were observed between HMF selectivity and ratio of mesopore to micropore volume, and between fructose conversion and total acid density. High yields of glucose (86.5 Cmol% at 150 °C, 20 min) and HMF (30.2 Cmol% at 180 °C, 20 min) were produced from rice starch and bread waste, respectively, over H3PO4-activated biochar. These results highlighted the potential of biochar catalyst in biorefinery as an emerging application of engineered biochar.