Iris Ming-Jing Xu
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iris Ming-Jing Xu.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Iris Ming-Jing Xu; Robin Kit-Ho Lai; Shu-Hai Lin; Aki Pui-Wah Tse; David Kung-Chun Chiu; Hui-Yu Koh; Cheuk-Ting Law; Chun-Ming Wong; Zongwei Cai; Carmen Chak-Lui Wong; Irene Oi-Lin Ng
Significance Excessive accumulation of oxidative stress is harmful to cancer cells. Our study demonstrates the important roles of a pentose phosphate pathway (PPP) enzyme, transketolase (TKT), in redox homeostasis in cancer development. We highlight the clinical relevance of TKT expression in cancers. We also show that TKT overexpression in cancer cells is a response of Nuclear Factor, Erythroid 2-Like 2 (NRF2) activation, a sensor to cellular oxidative stress. TKT locates at an important position that connects PPP with glycolysis to affect production of antioxidant NADPH. Our preclinical study shows that targeting TKT leads to elevation of oxidative stress, making cancer cells more vulnerable to therapeutic treatment, such as Sorafenib. Using TKT as an example, our study suggests that targeting enzymes for antioxidant production represents a direction for cancer treatment. Cancer cells experience an increase in oxidative stress. The pentose phosphate pathway (PPP) is a major biochemical pathway that generates antioxidant NADPH. Here, we show that transketolase (TKT), an enzyme in the PPP, is required for cancer growth because of its ability to affect the production of NAPDH to counteract oxidative stress. We show that TKT expression is tightly regulated by the Nuclear Factor, Erythroid 2-Like 2 (NRF2)/Kelch-Like ECH-Associated Protein 1 (KEAP1)/BTB and CNC Homolog 1 (BACH1) oxidative stress sensor pathway in cancers. Disturbing the redox homeostasis of cancer cells by genetic knockdown or pharmacologic inhibition of TKT sensitizes cancer cells to existing targeted therapy (Sorafenib). Our study strengthens the notion that antioxidants are beneficial to cancer growth and highlights the therapeutic benefits of targeting pathways that generate antioxidants.
Hepatology | 2016
David Kung-Chun Chiu; Iris Ming-Jing Xu; Robin Kit-Ho Lai; Aki Pui-Wah Tse; Larry Lai Wei; Hui-Yu Koh; L Li; Derek Lee; Regina Cheuk-Lam Lo; Chun-Ming Wong; Irene Oi-Lin Ng; Carmen Chak-Lui Wong
A population of stromal cells, myeloid‐derived suppressor cells (MDSCs), is present in tumors. Though studies have gradually revealed the protumorigenic functions of MDSCs, the molecular mechanisms guiding MDSC recruitment remain largely elusive. Hypoxia, O2 deprivation, is an important factor in the tumor microenvironment of solid cancers, whose growth often exceeds the growth of functional blood vessels. Here, using hepatocellular carcinoma as the cancer model, we show that hypoxia is an important driver of MDSC recruitment. We observed that MDSCs preferentially infiltrate into hypoxic regions in human hepatocellular carcinoma tissues and that hypoxia‐induced MDSC infiltration is dependent on hypoxia‐inducible factors. We further found that hypoxia‐inducible factors activate the transcription of chemokine (C‐C motif) ligand 26 in cancer cells to recruit chemokine (C‐X3‐C motif) receptor 1‐expressing MDSCs to the primary tumor. Knockdown of chemokine (C‐C motif) ligand 26 in cancer cells profoundly reduces MDSC recruitment, angiogenesis, and tumor growth. Therapeutically, blockade of chemokine (C‐C motif) ligand 26 production in cancer cells by the hypoxia‐inducible factor inhibitor digoxin or blockade of chemokine (C‐X3‐C motif) receptor 1 in MDSCs by chemokine (C‐X3‐C motif) receptor 1 neutralizing antibody could substantially suppress MDSC recruitment and tumor growth. Conclusion: This study unprecedentedly reveals a novel molecular mechanism by which cancer cells direct MDSC homing to primary tumor and suggests that targeting MDSC recruitment represents an attractive therapeutic approach against solid cancers. (Hepatology 2016;64:797‐813)
Gut | 2017
Daniel Wai-Hung Ho; Lo K. Chan; Yung T Chiu; Iris Ming-Jing Xu; Ronnie Tung-Ping Poon; Tan T Cheung; Chung N Tang; Victor W L Tang; Irene L O Lo; Polly W Y Lam; Derek Yau; Miao X Li; Chun M Wong; Irene Oi-Lin Ng
Objective We investigated the mutational landscape of mammalian target of rapamycin (mTOR) signalling cascade in hepatocellular carcinomas (HCCs) with chronic HBV background, aiming to evaluate and delineate mutation-dependent mechanism of mTOR hyperactivation in hepatocarcinogenesis. Design We performed next-generation sequencing on human HCC samples and cell line panel. Systematic mutational screening of mTOR pathway-related genes was undertaken and mutant genes were evaluated based on their recurrence. Protein expressions of tuberous sclerosis complex (TSC)1, TSC2 and pRPS6 were assessed by immunohistochemistry in human HCC samples. Rapamycin sensitivity was estimated by colony-formation assay in HCC cell lines and the treatment was further tested using our patient-derived tumour xenograft (PDTX) models. Results We identified and confirmed multiple mTOR components as recurrently mutated in HBV-associated HCCs. Of significance, we detected frequent (16.2%, n=18/111) mutations of TSC1 and TSC2 genes in the HCC samples. The spectrum of TSC1/2 mutations likely disrupts the endogenous gene functions in suppressing the downstream mTOR activity through different mechanisms and leads to more aggressive tumour behaviour. Mutational disruption of TSC1 and TSC2 was also observed in HCC cell lines and our PDTX models. TSC-mutant cells exhibited reduced colony-forming ability on rapamycin treatment. With the use of biologically relevant TSC2-mutant PDTXs, we demonstrated the therapeutic benefits of the hypersensitivity towards rapamycin treatment. Conclusions Taken together, our findings suggest the significance of previously undocumented mutation-dependent mTOR hyperactivation and frequent TSC1/2 mutations in HBV-associated HCCs. They define a molecular subset of HCC having genetic aberrations in mTOR signalling, with potential significance of effective specific drug therapy.
Clinical Cancer Research | 2016
Robin Kit-Ho Lai; Iris Ming-Jing Xu; David Kung-Chun Chiu; Aki Pui-Wah Tse; Larry Lai Wei; Cheuk-Ting Law; Derek Lee; Chun-Ming Wong; Maria Pik Wong; Irene Oi-Lin Ng; Carmen Chak-Lui Wong
Purpose: Hepatocellular carcinoma (HCC) lacks effective curative therapy. Hypoxia is commonly found in HCC. Hypoxia elicits a series of protumorigenic responses through hypoxia-inducible factor-1 (HIF1). Better understanding of the metabolic adaptations of HCC cells during hypoxia is essential to the design of new therapeutic regimen. Experimental Design: Expressions of genes involved in the electron transport chain (ETC) in HCC cell lines (20% and 1% O2) and human HCC samples were analyzed by transcriptome sequencing. Expression of NDUFA4L2, a less active subunit in complex I of the ETC, in 100 pairs of HCC and nontumorous liver tissues were analyzed by qRT-PCR. Student t test and Kaplan–Meier analyses were used for clinicopathologic correlation and survival studies. Orthotopic HCC implantation model was used to evaluate the efficiency of HIF inhibitor. Results: NDUFA4L2 was drastically overexpressed in human HCC and induced by hypoxia. NDUFA4L2 overexpression was closely associated with tumor microsatellite formation, absence of tumor encapsulation, and poor overall survival in HCC patients. We confirmed that NDUFA4L2 was HIF1-regulated in HCC cells. Inactivation of HIF1/NDUFA4L2 increased mitochondrial activity and oxygen consumption, resulting in ROS accumulation and apoptosis. Knockdown of NDUFA4L2 markedly suppressed HCC growth and metastasis in vivo. HIF inhibitor, digoxin, significantly suppressed growth of tumors that expressed high level of NDUFA4L2. Conclusions: Our study has provided the first clinical relevance of NDUFA4L2 in human cancer and suggested that HCC patients with NDUFA4L2 overexpression may be suitable candidates for HIF inhibitor treatment. Clin Cancer Res; 22(12); 3105–17. ©2016 AACR.
PLOS ONE | 2014
Carmen Chak-Lui Wong; Sandy Leung-Kuen Au; Aki Pui-Wah Tse; Iris Ming-Jing Xu; Robin Kit-Ho Lai; David Kung-Chun Chiu; Larry Lai Wei; Dorothy Ngo-Yin Fan; Felice Ho-Ching Tsang; Regina Cheuk-Lam Lo; Chun-Ming Wong; Irene Oi-Lin Ng
Hepatocellular carcinoma (HCC) is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2) was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.
Journal of Clinical Investigation | 2017
Derek Lee; Iris Ming-Jing Xu; David Kung-Chun Chiu; Robin Kit-Ho Lai; Aki Pui-Wah Tse; L Li; Cheuk-Ting Law; Felice Ho-Ching Tsang; Larry Lai Wei; Cerise Yuen-Ki Chan; Chun-Ming Wong; Irene Oi-Lin Ng; Carmen Chak-Lui Wong
Cancer cells preferentially utilize glucose and glutamine, which provide macromolecules and antioxidants that sustain rapid cell division. Metabolic reprogramming in cancer drives an increased glycolytic rate that supports maximal production of these nutrients. The folate cycle, through transfer of a carbon unit between tetrahydrofolate and its derivatives in the cytoplasmic and mitochondrial compartments, produces other metabolites that are essential for cell growth, including nucleotides, methionine, and the antioxidant NADPH. Here, using hepatocellular carcinoma (HCC) as a cancer model, we have observed a reduction in growth rate upon withdrawal of folate. We found that an enzyme in the folate cycle, methylenetetrahydrofolate dehydrogenase 1–like (MTHFD1L), plays an essential role in support of cancer growth. We determined that MTHFD1L is transcriptionally activated by NRF2, a master regulator of redox homeostasis. Our observations further suggest that MTHFD1L contributes to the production and accumulation of NADPH to levels that are sufficient to combat oxidative stress in cancer cells. The elevation of oxidative stress through MTHFD1L knockdown or the use of methotrexate, an antifolate drug, sensitizes cancer cells to sorafenib, a targeted therapy for HCC. Taken together, our study identifies MTHFD1L in the folate cycle as an important metabolic pathway in cancer cells with the potential for therapeutic targeting.
Nature Communications | 2017
David Kung-Chun Chiu; Aki Pui-Wah Tse; Iris Ming-Jing Xu; Jane Di Cui; Robin Kit-Ho Lai; L Li; Hui-Yu Koh; Felice Ho-Ching Tsang; Larry Lai Wei; Chun-Ming Wong; Irene Oi-Lin Ng; Carmen Chak-Lui Wong
Myeloid-derived suppressor cells (MDSCs) possess immunosuppressive activities, which allow cancers to escape immune surveillance and become non-responsive to immune checkpoints blockade. Here we report hypoxia as a cause of MDSC accumulation. Using hepatocellular carcinoma (HCC) as a cancer model, we show that hypoxia, through stabilization of hypoxia-inducible factor-1 (HIF-1), induces ectoenzyme, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2/CD39L1), in cancer cells, causing its overexpression in HCC clinical specimens. Overexpression of ENTPD2 is found as a poor prognostic indicator for HCC. Mechanistically, we demonstrate that ENTPD2 converts extracellular ATP to 5′-AMP, which prevents the differentiation of MDSCs and therefore promotes the maintenance of MDSCs. We further find that ENTPD2 inhibition is able to mitigate cancer growth and enhance the efficiency and efficacy of immune checkpoint inhibitors. Our data suggest that ENTPD2 may be a good prognostic marker and therapeutic target for cancer patients, especially those receiving immune therapy.Myeloid-derived suppressor cells (MDSCs) promote tumor immune escape. Here, the authors show that in hepatocellular carcinoma, hypoxia induces the expression of ENTPD2 on cancer cells leading to elevated extracellular 5′-AMP, which in turn promote the maintenance of MDSCs by preventing their differentiation.
Oncogenesis | 2018
Aki Pui-Wah Tse; Karen Man-Fong Sze; Queenie Tsung-Kwan Shea; Elley Yung-Tuen Chiu; Felice Ho-Ching Tsang; David Kung-Chun Chiu; Misty Shuo Zhang; Derek Lee; Iris Ming-Jing Xu; Cerise Yuen-Ki Chan; Hui-Yu Koh; Chun-Ming Wong; Yong-Ping Zheng; Irene Oi-Lin Ng; Carmen Chak-Lui Wong
Hepatocellular carcinoma (HCC), accounting for 90% of primary liver cancer, is a lethal malignancy that is tightly associated with chronic hepatitis B virus (HBV) infection. HBV encodes a viral onco-protein, transactivator protein X (HBx), which interacts with proteins of hepatocytes to promote oncogenesis. Our current study focused on the interaction of HBx with a transcription factor, hypoxia-inducible factor-1α (HIF-1α), which is stabilized by low O2 condition (hypoxia) and is found to be frequently overexpressed in HCC intra-tumorally due to poor blood perfusion. Here, we showed that overexpression of HBx by tetracycline-inducible systems further stabilized HIF-1α under hypoxia in HBV-negative HCC cell lines. Reversely, knockdown of HBx reduced HIF-1α protein stabilization under hypoxia in HBV-positive HCC cell lines. More intriguingly, overexpression of HBx elevated the mRNA and protein expression of a family of HIF-1α target genes, the lysyl oxidase (LOX) family in HCC. The LOX family members function to cross-link collagen in the extracellular matrix (ECM) to promote cancer progression and metastasis. By analyzing the collagens under scanning electron microscope, we found that collagen fibers were significantly smaller in size when incubated with conditioned medium from HBx knockdown HCC cells as compared to control HCC cells in vitro. Transwell invasion assay further revealed that less cells were able to invade through the matrigel which was pre-treated with conditioned medium from HBx knockdown HCC cells as compared to control HCC cells. Orthotopic and subcutaneous HCC models further showed that knockdown of HBx in HCC cells reduced collagen crosslinking and stiffness in vivo and repressed HCC growth and metastasis. Taken together, our in vitro and in vivo studies showed the HBx remodeled the ECM through HIF-1α/LOX pathway to promote HCC metastasis.
Cancer Research | 2016
David Kung-Chun Chiu; Iris Ming-Jing Xu; Robin Kit-Ho Lai; Aki Pui-Wah Tse; Larry Lai Wei; Hui-Yu Koh; Regina Cheuk-Lam Lo; Chun-Ming Wong; Irene Oi-Lin Ng; Carmen Chak-Lui Wong
Background and Objective: Myeloid-derived suppressor cells (MDSCs) accumulate in tumors and highly pro-tumorigenic. These MDSCs exhibit inhibitory functions against effector T cells and natural killer cells in tumor sites, as well as secrete pro-angiogenic factors or differentiate to endothelial cells to promote angiogenesis and metastasis. While it is appreciated that depletion of MDSCs could bring tumoricidal effects, there are significant gaps in knowledge about the underlying mechanisms responsible for MDSC recruitment to tumor sites. Hypoxia, O2 deprivation, is an important factor in the tumor microenvironment of HCC that modifies the stromal components. Using hepatocellular carcinoma (HCC) as a model, we investigated whether hypoxia is a driver of MDSC recruitment in HCC. Experimental Procedures: Gene profiling of HCC cells exposed to hypoxia and normoxia were analyzed by transcriptome sequencing to identify potential hypoxia-induced chemokines for MDSC recruitment. MDSCs were isolated from HCC-bearing mice by magnetic bead sorting for different functional assays. Boyden chambers were used to evaluate the invasive ability of MDSCs. Flow cytometry was used to detect the frequencies of tumor-associated MDSCs in orthotopic HCC mouse models. Results: We observed that MDSCs preferentially infiltrated into hypoxic regions in human HCC tissues and hypoxia-induced MDSC infiltration was dependent on hypoxia-inducible factors (HIFs). HIFs activated the transcription of chemokine (C-C motif) ligand 26 (CCL26) in HCC cells to recruit chemokine (C-X3-C motif) receptor 1 (CX3CR1)-expressing MDSCs to the primary tumor. Knockdown of CCL26 in HCC cells profoundly reduces MDSC recruitment, angiogenesis, and tumor growth. Therapeutically, blockade of CCL26 production in HCC cells by HIF inhibitor, digoxin, or blockade of CX3CR1 in MDSCs by CX3CR1 neutralizing antibody could substantially suppress MDSC recruitment and tumor growth. Conclusion: This study unprecedentedly reveals a novel molecular mechanism by which HCC cells direct MDSC homing to primary tumor and suggests that targeting MDSC recruitment represents an attractive therapeutic approach against HCC. Citation Format: David Kung-Chun Chiu, Iris Ming-Jing Xu, Robin Kit-Ho Lai, Aki Pui-Wah Tse, Larry Lai Wei, Hui-Yu Koh, Regina Cheuk-Lam Lo, Chun-Ming Wong, Irene Oi-Lin Ng, Carmen Chak-Lui Wong. Hypoxia as a driver of myeloid-derived suppressor cell recruitment in hepatocellular carcinoma via CCL26/CX3CR1. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4399.
Oncotarget | 2015
Carmen Chak-Lui Wong; Dorothy Ngo-Yin Fan; Alan Ka-Lun Kai; Edmund Kwok-Kwan Tung; Iris Ming-Jing Xu; Irene Oi-Lin Ng; Regina Cheuk-Lam Lo