Iris Motzke
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iris Motzke.
Conservation Biology | 2010
Thomas C. Wanger; Djoko T. Iskandar; Iris Motzke; Barry W. Brook; Navjot S. Sodhi; Yann Clough; Teja Tscharntke
Little is known about the effects of anthropogenic land-use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land-use modification gradient stretching from primary forest, secondary forest, natural-shade cacao agroforest, planted-shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land-use modification gradient, but reptile richness and abundance peaked in natural-shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf-litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long-term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.
Journal of Applied Ecology | 2015
Lucas A. Garibaldi; Ignasi Bartomeus; Riccardo Bommarco; Alexandra M. Klein; Saul A. Cunningham; Marcelo A. Aizen; Virginie Boreux; Michael P. D. Garratt; Luísa G. Carvalheiro; Claire Kremen; Carolina L. Morales; Christof Schüepp; Natacha P. Chacoff; Breno Magalhães Freitas; Vesna Gagic; Andrea Holzschuh; Björn K. Klatt; Kristin M. Krewenka; Smitha Krishnan; Margaret M. Mayfield; Iris Motzke; Mark Otieno; Jessica D. Petersen; Simon G. Potts; Taylor H. Ricketts; Maj Rundlöf; Amber R. Sciligo; Palatty Allesh Sinu; Ingolf Steffan-Dewenter; Hisatomo Taki
Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar.Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Editors Choice
Proceedings of the Royal Society B-Biological SciencesProceedings of the Royal Society B-Biological Sciences | 2011
Thomas C. Wanger; Arno Wielgoss; Iris Motzke; Yann Clough; Barry W. Brook; Navjot S. Sodhi; Teja Tscharntke
Interactions between native diversity and invasive species can be more complex than is currently understood. Invasive ant species often substantially reduce diversity in the native ants diversity that act as natural control agents for pest insects. In Indonesia (on the island of Sulawesi), the third largest cacao producer worldwide, we show that a predatory endemic toad (Ingerophrynus celebensis) controls invasive ant (Anoplolepis gracilipes) abundance, and positively affects native ant diversity. We call this the invasive-naivety effect (an opposite of enemy release), whereby alien species may not harbour anti-predatory defences against a novel native predator. A positive effect of the toads on native ants may facilitate their predation on insect vectors of cacao diseases. Hence, toads may increase crop yield, but further research is needed on this aspect. Ironically, amphibians are globally the most threatened vertebrate class and are strongly impacted by the conversion of rainforest to cacao plantations in Sulawesi. It is, therefore, crucial to manage cacao plantations to maintain these endemic toads, as they may provide critical ecosystem services, such as invasion resistance and preservation of native insect diversity.
Ecological Research | 2009
Thomas C. Wanger; Iris Motzke; Samuel Furrer; Barry W. Brook; Bernd Gruber
Rapid and reliable estimation of population size is needed for the efficient monitoring of animal populations of conservation concern. Unfortunately, technical advances in this area have not been paralleled in uptake in conservation, which may be due to difficulties in implementation or the lack of general guidelines for application. Here we tested five different methods used to estimate population size [capture–mark–recapture (CMR), finite-mixture models, model averaging of finite-mixture models, accumulation curve methods (ACM), and the line transect method (LT)] using extensive capture–recapture data of the giant day gecko (Gekkonidae, Phelsuma madagascariensis grandis, Gray 1870) at the Masoala rainforest exhibit, Zurich Zoo. When the complete data were analyzed [30 sessions (and 27 sessions for the LT)], all methods except the LT produced similar estimates of population size. The simple ACM gave a small coefficient of variation (CV), but did not cover the most likely value of population size at moderate sampling effort. Nevertheless, the ACM was the only method that showed a reasonable convergence when subsets of data were used. CMR and Pledger models included the reference value in their confidence intervals (CI) after 25 and 30 sessions, respectively. Although model averaging did slightly improve the estimate, the CV was still high for the full dataset. Our method of using subsets of data to test the robustness of estimates is simple to apply and could be adopted more widely in such analyzes to evaluate sensitivity to method of evaluation. In conclusion, simple accumulation methods showed similar efficiency to more complex statistical models, and are likely to be sufficiently precise for most conservation monitoring purposes.
Journal of Applied Ecology | 2015
Iris Motzke; Teja Tscharntke; Thomas C. Wanger; Alexandra-Maria Klein
Summary Pollination can be an essential but often neglected ecosystem service to mitigate crop yield gaps. Pollination services are usually studied in isolation, and their relative role and possible interactions with other factors, such as major management practices, is little understood. We tested how pollination (insect vs. wind- and self-pollination) interacts with weed control, fertilization and insect herbivore control and how these factors as well as flower-visiting bees influence fruit set and yield of cucumber Cucumis sativus L. in 13 traditional Indonesian home gardens. Although insect pollination, fertilization and weed control additively increased crop yield, fertilization and weed control alone could not compensate for pollination loss. Pollination individually accounted for 75% of the yield and was, hence, the most important driver of yield. In contrast, herbivore control through insecticides at commonly applied levels did not increase yield. Yield strongly increased with higher number of flower-visiting bee individuals, while the number of bee individuals in turn was not influenced by weed control, fertilization or herbivore control, but increased with higher number of cucumber flowers. Synthesis and applications. Although multiple management practices influence yield, they cannot compensate yield gaps from pollinator loss in cucumber smallholder production in Indonesia. Our results also show that the widespread use of insecticides without considering the impacts on pest reduction is uneconomical. Here, reducing insecticides caused no income loss and, at the same time, reduces potential risks to important pollinators, which needs to be acknowledged by policy-driven regulations for pesticide application in tropical agroecosystems. Our results stress the importance of enhancing bee populations to facilitate pollination services. Bee management practices, such as sustaining additional food resources for pollinators, need to be established.
Science | 2013
Lucas A. Garibaldi; Ingolf Steffan-Dewenter; Rachael Winfree; Marcelo A. Aizen; Riccardo Bommarco; Saul A. Cunningham; Claire Kremen; Luísa G. Carvalheiro; Lawrence D. Harder; Ohad Afik; Ignasi Bartomeus; Faye Benjamin; Virginie Boreux; Daniel P. Cariveau; Natacha P. Chacoff; Jan H. Dudenhöffer; Breno Magalhães Freitas; Jaboury Ghazoul; Sarah S. Greenleaf; Juliana Hipólito; Andrea Holzschuh; Brad G. Howlett; Rufus Isaacs; Steven K. Javorek; Christina M. Kennedy; Kristin M. Krewenka; Smitha Krishnan; Yael Mandelik; Margaret M. Mayfield; Iris Motzke
Biological Conservation | 2012
Teja Tscharntke; Yann Clough; Thomas C. Wanger; Louise E. Jackson; Iris Motzke; Ivette Perfecto; John Vandermeer; Anthony Whitbread
Agriculture, Ecosystems & Environment | 2016
Iris Motzke; Alexandra-Maria Klein; Shahabuddin Saleh; Thomas C. Wanger; Teja Tscharntke
Agricultural and Forest Entomology | 2013
Iris Motzke; Teja Tscharntke; Navjot S. Sodhi; Alexandra-Maria Klein; Thomas C. Wanger
Raffles Bulletin of Zoology | 2012
Iris Motzke; Thomas C. Wanger; Erin Zanre; Teja Tscharntke; Jan Barkmann