Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iris Porat is active.

Publication


Featured researches published by Iris Porat.


Journal of Bacteriology | 2004

Complete Genome Sequence of the Genetically Tractable Hydrogenotrophic Methanogen Methanococcus maripaludis

Erik L. Hendrickson; Rajinder Kaul; Yang Zhou; D. Bovee; P. Chapman; J. Chung; E. Conway de Macario; J. A. Dodsworth; W. Gillett; David E. Graham; Murray Hackett; Andrew K. Haydock; Allison Kang; Miriam Land; Ruth Levy; Thomas J. Lie; Tiffany A. Major; Brian C. Moore; Iris Porat; A. Palmeiri; G. Rouse; C. Saenphimmachak; Dieter Söll; S. Van Dien; Tiansong Wang; William B. Whitman; Qiangwei Xia; Y. Zhang; Frank W. Larimer; Maynard V. Olson

The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.


Molecular & Cellular Proteomics | 2006

Quantitative Proteomics of the Archaeon Methanococcus maripaludis Validated by Microarray Analysis and Real Time PCR

Qiangwei Xia; Erik L. Hendrickson; Yi Zhang; Tiansong Wang; Fred Taub; Brian C. Moore; Iris Porat; William B. Whitman; Murray Hackett; John A. Leigh

For the archaeon Methanococcus maripaludis, a fully sequenced and annotated model species of hydrogenotrophic methanogen, we report validation of quantitative protein level expression ratios on a proteome-wide basis. Using an approach based on quantitative multidimensional capillary HPLC and quadrupole ion trap mass spectrometry, coverage of gene expression approached that currently achievable with transcription microarrays. Comprehensive mass spectrometry-based proteomics and spotted cDNA arrays were used to compare global protein and mRNA levels in a wild-type (S2) and mutant strain (S40) of M. maripaludis. Using linear regression with 652 expression ratios generated by both the proteomic and microarray methods, a product moment correlation coefficient of 0.24 was observed. The correlation improved to 0.61 if only genes showing significant expression changes were included. A novel two-stage method of outlier detection was used for the protein measurements when Dixon’s Q-test by itself failed to give satisfactory results. The log2 transformations of the number of peptides or isotopic peptide pairs associated with each ORF, divided by the predicted molecular weight, were found to have moderately positive correlations with two bioinformatic predictors of gene expression based on codon bias. We detected peptides derived from 939 proteins or 55% of the genome coding capacity. Of these, 60 were overexpressed, and 34 were underexpressed in the mutant. Of the 1722 ORFs encoded in the genome, 1597 or 93% were probed by cDNA arrays. Of these, 50 were more highly expressed, and 45 showed lower expression levels in the mutant relative to the wild type. 15 ORFs were shown to be overexpressed by both methods, and two ORFs were shown to be overexpressed by proteomics and underexpressed by microarray.


PLOS ONE | 2009

Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

Iain Anderson; Luke E. Ulrich; Boguslaw Lupa; Dwi Susanti; Iris Porat; Sean D. Hooper; Athanasios Lykidis; Magdalena Sieprawska-Lupa; Lakshmi Dharmarajan; Eugene Goltsman; Alla Lapidus; Elizabeth Saunders; Cliff Han; Miriam Land; Susan Lucas; Biswarup Mukhopadhyay; William B. Whitman; Carl R. Woese; James Bristow; Nikos C. Kyrpides

Background Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).


PLOS ONE | 2011

Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

Iain Anderson; Carmen Scheuner; Markus Göker; Kostas Mavromatis; Sean D. Hooper; Iris Porat; Hans-Peter Klenk; Natalia Ivanova; Nikos C. Kyrpides

Background The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. Methodology/Principal Findings We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. Conclusions These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.


Journal of Bacteriology | 2006

Disruption of the Operon Encoding Ehb Hydrogenase Limits Anabolic CO2 Assimilation in the Archaeon Methanococcus maripaludis

Iris Porat; Wonduck Kim; Erik L. Hendrickson; Qiangwei Xia; Yi Zhang; Tiansong Wang; Fred Taub; Brian C. Moore; Iain Anderson; Murray Hackett; John A. Leigh; William B. Whitman

Methanococcus maripaludis is a mesophilic archaeon that reduces CO2 to methane with H2 or formate as an energy source. It contains two membrane-bound energy-conserving hydrogenases, Eha and Ehb. To determine the role of Ehb, a deletion in the ehb operon was constructed to yield the mutant, strain S40. Growth of S40 was severely impaired in minimal medium. Both acetate and yeast extract were necessary to restore growth to nearly wild-type levels, suggesting that Ehb was involved in multiple steps in carbon assimilation. However, no differences in the total hydrogenase specific activities were found between the wild type and mutant in either cell extracts or membrane-purified fractions. Methanogenesis by resting cells with pyruvate as the electron donor was also reduced by 30% in S40, suggesting a defect in pyruvate oxidation. CO dehydrogenase/acetyl coenzyme A (CoA) synthase and pyruvate oxidoreductase had higher specific activities in the mutant, and genes encoding these enzymes, as well as AMP-forming acetyl-CoA synthetase, were expressed at increased levels. These observations support a role for Ehb in anabolic CO2 assimilation in methanococci.


Journal of Bacteriology | 2008

Genome Sequence of Thermofilum pendens Reveals an Exceptional Loss of Biosynthetic Pathways without Genome Reduction

Iain Anderson; Dwi Susanti; Iris Porat; Claudia I. Reich; Luke E. Ulrich; James G. Elkins; Kostas Mavromatis; Athanasios Lykidis; Edwin Kim; Linda S. Thompson; Matt Nolan; Miriam Land; Alex Copeland; Alla Lapidus; Susan Lucas; Chris Detter; Igor B. Zhulin; Gary J. Olsen; William B. Whitman; Biswarup Mukhopadhyay; James Bristow; Nikos C. Kyrpides

We report the complete genome of Thermofilum pendens, a deeply branching, hyperthermophilic member of the order Thermoproteales in the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact, T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features that are common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known previously to utilize peptides as an energy source, but the genome revealed a substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may obtain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogen lyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time that this enzyme has been found outside the Methanosarcinales, and the presence of a presenilin-related protein. The predicted highly expressed proteins do not include proteins encoded by housekeeping genes and instead include ABC transporters for carbohydrates and peptides and clustered regularly interspaced short palindromic repeat-associated proteins.


Journal of Bacteriology | 2008

Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate

Erik L. Hendrickson; Yuchen Liu; Guillermina Rosas-Sandoval; Iris Porat; Dieter Söll; William B. Whitman; John A. Leigh

Continuous culture, transcriptome arrays, and measurements of cellular amino acid pools and tRNA charging levels were used to determine the response of Methanococcus maripaludis to leucine limitation. For comparison, the responses to phosphate and H2 limitations were measured as well. In addition, the effect of growth rate was determined. Leucine limitation resulted in a broad response. tRNA(Leu) charging decreased, but only small increases in mRNA were seen for amino acid biosynthesis genes. However, the cellular levels of free isoleucine and valine showed significant increases, indicating a coordinate regulation of branched-chain amino acids at a post-mRNA level. Leucine limitation also resulted in increased mRNA abundance for ribosomal protein genes, increased rRNA abundance, and decreased mRNA abundance for genes of methanogenesis. In contrast, phosphate limitation induced a specific response, a marked increase in mRNA levels for a phosphate transporter. Some mRNA levels responded to more than one factor; for example, transcripts for flagellum synthesis genes decreased under conditions of leucine limitation and increased under H2 limitation. Increased growth rate resulted in increased mRNA levels for ribosomal protein genes, increased rRNA abundance, and increased mRNA for a gene encoding an S-layer protein.


Molecular Microbiology | 2006

Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis

Iris Porat; Magdalena Sieprawska-Lupa; Quincy Teng; Fredrick J. Bohanon; Robert H. White; William B. Whitman

Methanococcus maripaludis is a strictly anaerobic, methane‐producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6‐deoxy‐5‐ketofructose‐1‐phosphate (DKFP) pathway for the biosynthesis of aromatic amino acids (AroAAs) and p‐aminobenzoic acid (PABA) was demonstrated in M. maripaludis. Moreover, PABA was shown to be derived from an early intermediate in AroAA biosynthesis and not from chorismate. Following metabolic labelling with [U‐13C]‐acetate, the expected enrichments for phenylalanine and arylamine derived from PABA were observed. DKFP pathway activity was reduced following growth with aryl acids, an alternative source of the AroAAs. Lastly, a deletion mutant of aroA′, which encodes the first step in the DKFP pathway, required AroAAs and PABA for growth. Complementation of the mutants by an aroA′ expression vector restored the wild‐type phenotype. In contrast, a deletion of aroB′, which encodes the second step in the DKFP pathway, did not require AroAAs or PABA for growth. Presumably, methanococci contain an alternative activity for this step. These results identify the initial reactions of a new pathway for the biosynthesis of PABA in methanococci.


Journal of Bacteriology | 2004

Two Biosynthetic Pathways for Aromatic Amino Acids in the Archaeon Methanococcus maripaludis

Iris Porat; Brian W. Waters; Quincy Teng; William B. Whitman

Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon. Aromatic amino acids (AroAAs) are biosynthesized in this autotroph either by the de novo pathway, with chorismate as an intermediate, or by the incorporation of exogenous aryl acids via indolepyruvate oxidoreductase (IOR). In order to evaluate the roles of these pathways, the gene that encodes the third step in the de novo pathway, 3-dehydroquinate dehydratase (DHQ), was deleted. This mutant required all three AroAAs for growth, and no DHQ activity was detectible in cell extracts, compared to 6.0 +/- 0.2 mU mg(-1) in the wild-type extract. The growth requirement for the AroAAs could be fulfilled by the corresponding aryl acids phenylacetate, indoleacetate, and p-hydroxyphenylacetate. The specific incorporation of phenylacetate into phenylalanine by the IOR pathway was demonstrated in vivo by labeling with [1-(13)C]phenylacetate. M. maripaludis has two IOR homologs. A deletion mutant for one of these homologs contained 76, 74, and 42% lower activity for phenylpyruvate, p-hydoxyphenylpyruvate, and indolepyruvate oxidation, respectively, than the wild type. Growth of this mutant in minimal medium was inhibited by the aryl acids, but the AroAAs partially restored growth. Genetic complementation of the IOR mutant also restored much of the wild-type phenotype. Thus, aryl acids appear to regulate the expression or activity of the de novo pathway. The aryl acids did not significantly inhibit the activity of the biosynthetic enzymes chorismate mutase, prephenate dehydratase, and prephenate dehydrogenase in cell extracts, so the inhibition of growth was probably not due to an effect on these enzymes.


BMC Genomics | 2009

The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota

Iain Anderson; Lakshmi Dharmarajan; Sean D. Hooper; Iris Porat; Luke E. Ulrich; James G. Elkins; Kostas Mavromatis; Hui Sun; Miriam Land; Alla Lapidus; Susan Lucas; Kerrie Barry; Harald Huber; Igor B. Zhulin; William B. Whitman; Biswarup Mukhopadhyay; Carl R. Woese; James Bristow; Nikos C. Kyrpides

BackgroundStaphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes.ResultsThe 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced – Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes.ConclusionThe three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.

Collaboration


Dive into the Iris Porat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Leigh

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Land

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian C. Moore

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge