Irith Wiegand
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irith Wiegand.
Nature Protocols | 2008
Irith Wiegand; Kai Hilpert; Robert E. W. Hancock
The aim of broth and agar dilution methods is to determine the lowest concentration of the assayed antimicrobial agent (minimal inhibitory concentration, MIC) that, under defined test conditions, inhibits the visible growth of the bacterium being investigated. MIC values are used to determine susceptibilities of bacteria to drugs and also to evaluate the activity of new antimicrobial agents. Agar dilution involves the incorporation of different concentrations of the antimicrobial substance into a nutrient agar medium followed by the application of a standardized number of cells to the surface of the agar plate. For broth dilution, often determined in 96-well microtiter plate format, bacteria are inoculated into a liquid growth medium in the presence of different concentrations of an antimicrobial agent. Growth is assessed after incubation for a defined period of time (16–20 h) and the MIC value is read. This protocol applies only to aerobic bacteria and can be completed in 3 d.
Antimicrobial Agents and Chemotherapy | 2010
Lucía Fernández; W. J. Gooderham; Manjeet Bains; Joseph B. McPhee; Irith Wiegand; Robert E. W. Hancock
ABSTRACT As multidrug resistance increases alarmingly, polymyxin B and colistin are increasingly being used in the clinic to treat serious Pseudomonas aeruginosa infections. In this opportunistic pathogen, subinhibitory levels of polymyxins and certain antimicrobial peptides induce resistance toward higher, otherwise lethal, levels of these antimicrobial agents. It is known that the modification of lipid A of lipopolysaccharide (LPS) is a key component of this adaptive peptide resistance, but to date, the regulatory mechanism underlying peptide regulation in P. aeruginosa has remained elusive. The PhoP-PhoQ and PmrA-PmrB two-component systems, which control this modification under low-Mg2+ conditions, do not appear to play a major role in peptide-mediated adaptive resistance, unlike in Salmonella where PhoQ is a peptide sensor. Here we describe the identification and characterization of a novel P. aeruginosa two-component regulator affecting polymyxin-adaptive resistance, ParR-ParS (PA1799-PA1798). This system was required for activation of the arnBCADTEF LPS modification operon in the presence of subinhibitory concentrations of polymyxin, colistin, or the bovine peptide indolicidin, leading to increased resistance to various polycationic antibiotics, including aminoglycosides. This study highlights the complexity of the regulatory network controlling resistance to cationic antibiotics and host peptides in P. aeruginosa, which has major relevance in the development and deployment of cationic antimicrobials.
Antimicrobial Agents and Chemotherapy | 2007
Beate Henrichfreise; Irith Wiegand; W. Pfister; Bernd Wiedemann
ABSTRACT In this study, we analyzed the mechanisms of multiresistance for 22 clinical multiresistant and clonally different Pseudomonas aeruginosa strains from Germany. Twelve and 10 strains originated from cystic fibrosis (CF) and non-CF patients, respectively. Overproduction of the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM was studied. Furthermore, loss of OprD, alterations in type II topoisomerases, AmpC overproduction, and the presence of 25 acquired resistance determinants were investigated. The presence of a hypermutation phenotype was also taken into account. Besides modifications in GyrA (91%), the most frequent mechanisms of resistance were MexXY-OprM overproduction (82%), OprD loss (82%), and AmpC overproduction (73%). Clear differences between strains from CF and non-CF patients were found: numerous genes coding for aminoglycoside-modifying enzymes and located, partially in combination with β-lactamase genes, in class 1 integrons were found only in strains from non-CF patients. Furthermore, multiple modifications in type II topoisomerases conferring high quinolone resistance levels and overexpression of MexAB-OprM were exclusively detected in multiresistant strains from non-CF patients. Correlations of the detected phenotypes and resistance mechanisms revealed a great impact of efflux pump overproduction on multiresistance in P. aeruginosa. Confirming previous studies, we found that additional, unknown chromosomally mediated resistance mechanisms remain to be determined. In our study, 11 out of 12 strains and 3 out of 10 strains from CF patients and non-CF patients, respectively, were hypermutable. This extremely high proportion of mutator strains should be taken into consideration for the treatment of multiresistant P. aeruginosa.
Antimicrobial Agents and Chemotherapy | 2008
Elena B. M. Breidenstein; Bhavjinder K. Khaira; Irith Wiegand; Joerg Overhage; Robert E. W. Hancock
ABSTRACT Pseudomonas aeruginosa offers substantial therapeutic challenges due to its high intrinsic resistance to many antibiotics and its propensity to develop mutational and/or adaptive resistance. The PA14 comprehensive mutant library was screened for mutants exhibiting either two- to eightfold increased susceptibilities (revealing genes involved in intrinsic resistance) or decreased susceptibilities (mutational resistance) to the fluoroquinolone ciprofloxacin. Thirty-five and 79 mutants with increased and decreased susceptibilities, respectively, were identified, as confirmed by broth dilution.
Antimicrobial Agents and Chemotherapy | 2010
Carolina Alvarez-Ortega; Irith Wiegand; Jorge Olivares; Robert E. W. Hancock; José L. Martínez
ABSTRACT The resistome of P. aeruginosa for three β-lactam antibiotics, namely, ceftazidime, imipenem, and meropenem, was deciphered by screening a comprehensive PA14 mutant library for mutants with increased or reduced susceptibility to these antimicrobials. Confirmation of the phenotypes of all selected mutants was performed by Etest. Of the total of 78 confirmed mutants, 41 demonstrated a reduced susceptibility phenotype and 37 a supersusceptibility (i.e., altered intrinsic resistance) phenotype, with 6 mutants demonstrating a mixed phenotype, depending on the antibiotic. Only three mutants demonstrated reduced (PA0908) or increased (glnK and ftsK) susceptibility to all three antibiotics. Overall, the mutant profiles of susceptibility suggested distinct mechanisms of action and resistance for the three antibiotics despite their similar structures. More detailed analysis indicated important roles for novel and known β-lactamase regulatory genes, for genes with likely involvement in barrier function, and for a range of regulators of alginate biosynthesis.
Journal of Bacteriology | 2009
Amy T. Y. Yeung; Ellen C. W. Torfs; Farzad Jamshidi; Manjeet Bains; Irith Wiegand; Robert E. W. Hancock; Joerg Overhage
Pseudomonas aeruginosa exhibits swarming motility on semisolid surfaces (0.5 to 0.7% agar). Swarming is a more than just a form of locomotion and represents a complex adaptation resulting in changes in virulence gene expression and antibiotic resistance. In this study, we used a comprehensive P. aeruginosa PA14 transposon mutant library to investigate how the complex swarming adaptation process is regulated. A total of 233 P. aeruginosa PA14 transposon mutants were verified to have alterations in swarming motility. The swarming-associated genes functioned not only in flagellar or type IV pilus biosynthesis but also in processes as diverse as transport, secretion, and metabolism. Thirty-three swarming-deficient and two hyperswarming mutants had transposon insertions in transcriptional regulator genes, including genes encoding two-component sensors and response regulators; 27 of these insertions were newly identified. Of the 25 regulatory mutants whose swarming motility was highly impaired (79 to 97%), only 1 (a PA1458 mutant) had a major defect in swimming, suggesting that this regulator might influence flagellar synthesis or function. Twitching motility, which requires type IV pili, was strongly affected in only two regulatory mutants (pilH and PA2571 mutants) and was moderately affected in three other mutants (algR, ntrB, and nosR mutants). Microarray analyses were performed to compare the gene expression profile of a swarming-deficient PA3587 mutant to that of the wild-type PA14 strain under swarming conditions. PA3587 showed 63% homology to metR, which encodes a regulator of methionine biosynthesis in Escherichia coli. The observed dysregulation in the metR mutant of nine different genes required for swarming motility provided a possible explanation for the swarming-deficient phenotype of this mutant.
Antimicrobial Agents and Chemotherapy | 2008
Kristen N. Schurek; Alexandra K. Marr; Patrick Taylor; Irith Wiegand; Lucie Semenec; Bhavjinder K. Khaira; Robert E. W. Hancock
ABSTRACT Pseudomonas aeruginosa strains isolated from patients with persistent lung infections and cystic fibrosis have been found to gradually develop aminoglycoside resistance over time. The aim of this study was to identify potential contributors to low-level aminoglycoside resistance, which may cause such graduated increases in resistance. The Harvard P. aeruginosa PA14 nonredundant library, consisting of approximately 5,800 mutants, was screened for twofold or greater increases in tobramycin resistance. Mutants carrying mutations in a total of 135 unique genes were identified and confirmed to have reduced susceptibility to tobramycin. Many of these genes were involved predominantly in energy metabolism; however, most of these mutants did not exhibit growth defects under the conditions tested, although some exhibited the small-colony phenotype and/or defects in growth under anaerobic conditions. Lipopolysaccharide mutants were also identified, and it was found that tobramycin had a reduced ability to permeabilize the outer membranes of these mutants. The results of this study emphasize the complexity of the interactions that tobramycin may have within the bacterial cell and introduce a large number of novel genes which may play a role in tobramycin resistance.
Antimicrobial Agents and Chemotherapy | 2013
Lucía Fernández; Carolina Alvarez-Ortega; Irith Wiegand; Jorge Olivares; Dana Kocíncová; Joseph S. Lam; José L. Martínez; Robert E. W. Hancock
ABSTRACT Multidrug resistance in Pseudomonas aeruginosa is increasingly becoming a threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial therapy. In many such cases, polymyxins are the only available option, although as their utilization increases so does the isolation of resistant strains. In this study, we screened a comprehensive PA14 mutant library to identify genes involved in changes of susceptibility to polymyxin B in P. aeruginosa. Surprisingly, our screening revealed that the polymyxin B resistome of this microorganism is fairly small. Thus, only one resistant mutant and 17 different susceptibility/intrinsic resistance determinants were identified. Among the susceptible mutants, a significant number carried transposon insertions in lipopolysaccharide (LPS)-related genes. LPS analysis revealed that four of these mutants (galU, lptC, wapR, and ssg) had an altered banding profile in SDS-polyacrylamide gels and Western blots, with three of them exhibiting LPS core truncation and lack of O-antigen decoration. Further characterization of these four mutants showed that their increased susceptibility to polymyxin B was partly due to increased basal outer membrane permeability. Additionally, these mutants also lacked the aminoarabinose-substituted lipid A species observed in the wild type upon growth in low magnesium. Overall, our results emphasize the importance of LPS integrity and lipid A modification in resistance to polymyxins in P. aeruginosa, highlighting the relevance of characterizing the genes that affect biosynthesis of cell surface structures in this pathogen to follow the evolution of peptide resistance in the clinic.
Virulence | 2011
Carolina Alvarez-Ortega; Irith Wiegand; Jorge Olivares; Robert E. W. Hancock; José L. Martínez
Pseudomonas aeruginosa is a relevant opportunistic pathogen particularly problematic due to its low intrinsic susceptibility to antibiotics. Intrinsic resistance has been traditionally attributed to the low permeability of cellular envelopes together with the presence of chromosomally-encoded detoxification systems such as multidrug efflux pumps or antibiotic inactivating enzymes. However, some recently published articles indicate that several other elements can contribute to the phenotype of intrinsic resistance of bacterial pathogens. In a recently published article, we explored the chromosomally-encoded determinants that contribute to the phenotype of susceptibility of P. aeruginosa to ceftazidime, imipenem and carbapenem. Using a comprehensive library of transposon-tagged insertion mutants, we found 37 loci in the chromosome of P. aeruginosa that contributed to its intrinsic resistance, because mutants in these loci were more susceptible to antibiotics than their parental strain. 41 further loci could potentially be involved in the acquisition of resistance, because mutants in these loci were less susceptible than their wild-type counterpart. These results indicate that the intrinsic resistome of P. aeruginosa involves several elements, belonging to different functional families and cannot be considered as a specific mechanism of adaptation to the recent usage of antibiotics as therapeutic agents. In the current article, we summarize the findings of the paper and discuss their implications for understanding the evolution of antibiotic resistance and for defining novel targets for the search of new antimicrobials. Finally, the validity of recent theories on the mechanisms of action of antibiotics is discussed taken into consideration the results of our paper and other recently published works on the mechanisms of intrinsic resistance to antibiotics of P. aeruginosa.
Antimicrobial Agents and Chemotherapy | 2012
Lucía Fernández; Håvard Jenssen; Manjeet Bains; Irith Wiegand; W. James Gooderham; Robert E. W. Hancock
ABSTRACT Cationic antimicrobial peptides pass across the outer membrane by interacting with negatively charged lipopolysaccharide (LPS), leading to outer membrane permeabilization in a process termed self-promoted uptake. Resistance can be mediated by the addition of positively charged arabinosamine through the action of the arnBCADTEF operon. We recently described a series of two-component regulators that lead to the activation of the arn operon after recognizing environmental signals, including low-Mg2+ (PhoPQ, PmrAB) or cationic (ParRS) peptides. However, some peptides did not activate the arn operon through ParRS. Here, we report the identification of a new two-component system, CprRS, which, upon exposure to a wide range of antimicrobial peptides, triggered the expression of the LPS modification operon. Thus, mutations in the cprRS operon blocked the induction of the arn operon in response to several antimicrobial peptides independently of ParRS but did not affect the response to low Mg2+. Distinct patterns of arn induction were identified. Thus, the responses to polymyxins were abrogated by either parR or cprR mutations, while responses to other peptides, including indolicidin, showed differential dependency on the CprRS and ParRS systems in a concentration-dependent manner. It was further demonstrated that, following exposure to inducing antimicrobial peptides, cprRS mutants did not become adaptively resistant to polymyxins as was observed for wild-type cells. Our microarray studies demonstrated that the CprRS system controlled a quite modest regulon, indicating that it was quite specific to adaptive peptide resistance. These findings provide greater insight into the complex regulation of LPS modification in Pseudomonas aeruginosa, which involves the participation of at least 4 two-component systems.