Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irma Järvelä is active.

Publication


Featured researches published by Irma Järvelä.


PLOS Genetics | 2012

Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders

Claire S. Leblond; Jutta Heinrich; Richard Delorme; Christian Proepper; Catalina Betancur; Guillaume Huguet; Marina Konyukh; Pauline Chaste; Elodie Ey; Maria Råstam; Henrik Anckarsäter; Gudrun Nygren; I. Carina Gillberg; Jonas Melke; Roberto Toro; Béatrice Regnault; Fabien Fauchereau; Oriane Mercati; Nathalie Lemière; David Skuse; Martin Poot; Richard Holt; Anthony P. Monaco; Irma Järvelä; Katri Kantojärvi; Raija Vanhala; Sarah Curran; David A. Collier; Patrick Bolton; Andreas G. Chiocchetti

Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.


American Journal of Human Genetics | 2002

A Genomewide Screen for Autism-Spectrum Disorders: Evidence for a Major Susceptibility Locus on Chromosome 3q25-27

Mari Auranen; Raija Vanhala; Teppo Varilo; Kristin L. Ayers; Elli Kempas; Tero Ylisaukko-oja; Janet S Sinsheimer; Leena Peltonen; Irma Järvelä

To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).


Gut | 2003

Transcriptional regulation of the lactase-phlorizin hydrolase gene by polymorphisms associated with adult-type hypolactasia

Mikko Kuokkanen; Nabil Sabri Enattah; Aino Oksanen; Erkki Savilahti; A Orpana; Irma Järvelä

Background and aims: The mechanism of the developmental downregulation of the lactase-phlorizin hydrolase (LPH) gene underlying adult-type hypolactasia is unknown. We have determined the functional significance of the recently identified two single nucleotide polymorphisms (SNPs), C/T−13910 and G/A−22018, associated with adult-type hypolactasia by studying LPH mRNA levels in intestinal biopsy samples with different genotypes. Methods: Intestinal biopsy samples were taken from 52 patients with abdominal complaints. Hypolactasia was diagnosed by determining lactase and sucrase activities and calculating their ratio (L/S ratio). The functional effect of the C/T−13910 and G/A−22018 genotype on expression of LPH mRNA was demonstrated in patients heterozygous for the C/T−13910 and G/A−22018 polymorphism and an informative expressed SNP located in the coding region of the LPH mRNA. Reverse transcription-polymerase chain reaction followed by solid phase minisequencing was used for accessing the relative expression levels of the LPH alleles using informative SNPs located in exons 1, 2, 6, 10, 13, or 17 as markers. Results: Statistically significant differences between the three different genotypes CC−13910 GG−22018, CT−13910 GA−22018, and TT−13910 AA-22018 and their respective L/S ratios were observed. Relative quantitation of the expressed LPH alleles showed that the persistent allele represented 92 (6)% (mean (SEM), range 78–99%; n=14) of the expressed LPH mRNA. The patient with the homozygous persistent TT−13910 AA−22018, as well as hypolactasic patients with CC−13910 GG−22018, showed equal expression of both alleles (47 (1)%; n=7). Conclusions: Expression of LPH mRNA in the intestinal mucosa in individuals with T−13910 A−22018 alleles is several times higher than that found in individuals with C−13910, G−22018 alleles. These findings suggest that the two SNPs, C/T−13910 and G/A−22018, associated with adult-type hypolactasia, are associated with the transcriptional regulation of the LPH gene. The presence of the T−13910 A−22018 allele also shows significant elevation of the L/S ratio.


Gut | 2004

A genetic test which can be used to diagnose adult-type hypolactasia in children

Heli Rasinperä; E. Savilahti; Nabil Sabri Enattah; Mikko Kuokkanen; Tötterman N; Harry Lindahl; Irma Järvelä; Kaija-Leena Kolho

Background/Aims: Adult-type hypolactasia (primary lactose malabsorption) affects most of world’s human population and limits the use of fresh milk due to lactose intolerance. The diagnosis of adult-type hypolactasia has been difficult to establish because of unsatisfactory diagnostic methods. C/T-13910 single nucleotide polymorphism residing 13910 base pairs from the 5′ end of the lactase gene has been shown to be associated with lactase persistence. The aim of the study was to assess the applicability of the C/T-13910 variant as a diagnostic test for adult-type hypolactasia during childhood. Methods: Intestinal biopsies were obtained from 329 children and adolescents of African, Finnish, and other White origins aged 0.1–20 years undergoing upper gastrointestinal endoscopy because of abdominal complaints. The biopsies were assayed for lactase, sucrase, and maltase activity and genotyped for the C/T-13910 variant using polymerase chain reaction minisequencing. Results: The frequency of the C/C-13910 genotype defining lactase non-persistence was well in agreement in this study with published figures for the prevalences of adult-type hypolactasia in Africans and Whites. The C/C-13910 genotype was associated with very low lactase activity (<10 U/g protein) in the majority of children tested at 8 years of age and in every child older than 12 years of age giving a specificity of 100% and sensitivity of 93% for the genetic test. The decline of lactase activity was somewhat earlier in African compared with Finnish children with C/C-13910 genotype (p<0.03). Conclusions: Genetic test of C/T-13910 polymorphism can be used as a first stage screening test for adult-type hypolactasia.


American Journal of Human Genetics | 2008

Submicroscopic Duplications of the Hydroxysteroid Dehydrogenase HSD17B10 and the E3 Ubiquitin Ligase HUWE1 Are Associated with Mental Retardation

Guy Froyen; Mark Corbett; Joke Vandewalle; Irma Järvelä; O Lawrence; Cliff Meldrum; Marijke Bauters; Karen Govaerts; Lucianne Vandeleur; Hilde Van Esch; Jamel Chelly; Damien Sanlaville; Hans van Bokhoven; Hans-Hilger Ropers; Frédéric Laumonnier; Enzo Ranieri; Charles E. Schwartz; Fatima Abidi; Patrick Tarpey; P. Andrew Futreal; Annabel Whibley; F. Lucy Raymond; Michael R. Stratton; Jean Pierre Fryns; Rodney J. Scott; Maarit Peippo; Marjatta Sipponen; Michael Partington; David Mowat; Michael Field

Submicroscopic copy-number imbalances contribute significantly to the genetic etiology of human disease. Here, we report a novel microduplication hot spot at Xp11.22 identified in six unrelated families with predominantly nonsyndromic XLMR. All duplications segregate with the disease, including the large families MRX17 and MRX31. The minimal, commonly duplicated region contains three genes: RIBC1, HSD17B10, and HUWE1. RIBC1 could be excluded on the basis of its absence of expression in the brain and because it escapes X inactivation in females. For the other genes, expression array and quantitative PCR analysis in patient cell lines compared to controls showed a significant upregulation of HSD17B10 and HUWE1 as well as several important genes in their molecular pathways. Loss-of-function mutations of HSD17B10 have previously been associated with progressive neurological disease and XLMR. The E3 ubiquitin ligase HUWE1 has been implicated in TP53-associated regulation of the neuronal cell cycle. Here, we also report segregating sequence changes of highly conserved residues in HUWE1 in three XLMR families; these changes are possibly associated with the phenotype. Our findings demonstrate that an increased gene dosage of HSD17B10, HUWE1, or both contribute to the etiology of XLMR and suggest that point mutations in HUWE1 are associated with this disease too.


European Journal of Human Genetics | 2005

Analysis of four neuroligin genes as candidates for autism.

Tero Ylisaukko-oja; Karola Rehnström; Mari Auranen; Raija Vanhala; Reija Alen; Elli Kempas; Pekka Ellonen; Joni A. Turunen; Ismo Makkonen; Raili Riikonen; Taina Nieminen-von Wendt; Lennart von Wendt; Leena Peltonen; Irma Järvelä

Neuroligins are cell-adhesion molecules located at the postsynaptic side of the synapse. Neuroligins interact with β-neurexins and this interaction is involved in the formation of functional synapses. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have recently been implicated in pathogenesis of autism. The neuroligin gene family consists of five members (NLGN1 at 3q26, NLGN2 at 17p13, NLGN3 at Xq13, NLGN4 at Xp22, and NLGN4Y at Yq11), of which NLGN1 and NLGN3 are located within the best loci observed in our previous genome-wide scan for autism in the Finnish sample. Here, we report a detailed molecular genetic analysis of NLGN1, NLGN3, NLGN4, and NLNG4Y in the Finnish autism sample. Mutation analysis of 30 probands selected from families producing linkage evidence for Xq13 and/or 3q26 loci revealed several polymorphisms, but none of these seemed to be functional. Family-based association analysis in 100 families with autism spectrum disorders yielded only modest associations at NLGN1 (rs1488545, P=0.002), NLGN3 (DXS7132, P=0.014), and NLGN4 (DXS996, P=0.031). We conclude that neuroligin mutations most probably represent rare causes of autism and that it is unlikely that the allelic variants in these genes would be major risk factors for autism.


Molecular Psychiatry | 2006

A heterogeneity-based genome search meta-analysis for autism-spectrum disorders.

Thomas A Trikalinos; A Karvouni; Elias Zintzaras; Tero Ylisaukko-oja; Leena Peltonen; Irma Järvelä; John P. A. Ioannidis

Autism and autism-spectrum disorders exhibit high heritability, although specific susceptibility genes still remain largely elusive. We performed a heterogeneity-based genome search meta-analysis (HEGESMA) of nine genome scans on autism or autism-spectrum disorders. Each genome scan was separated in 30 cM bins and the maximum linkage statistic from each bin was ranked. Significance for each bins average rank and for between-scan heterogeneity (dis-similarity in the average ranks) was obtained through Monte Carlo tests. For autism, data from 771 affected sibpairs were synthesized across six separate genome scans. Region 7q22–q32 reached genome-wide significance both in weighted and unweighted analyses, with evidence for significantly low between-scan heterogeneity. The flanking chromosomal region 7q32-qter reached the less stringent threshold of suggestive significance, with no evidence for low between-scan heterogeneity. For autism-spectrum disorders (634 affected sibpairs from five separate scans), no chromosomal region reached genome-wide significance. However, suggestive significance was reached for the chromosomal regions 17p11.2–q12 and 10p12–q11.1 in weighted analyses. There was evidence for significantly high between-scan heterogeneity for the former region. The meta-analysis suggests that the 7q22–q32 region should be further scrutinized for autism susceptibility genes, while autism-spectrum disorders seem to have quite diverse linkage signals across scans, possibly suggesting genetic heterogeneity across subsyndromes and subpopulations.


Annals of Neurology | 2006

Search for autism loci by combined analysis of Autism Genetic Resource Exchange and Finnish families

Tero Ylisaukko-oja; Maricela Alarcón; Rita M. Cantor; Mari Auranen; Raija Vanhala; Elli Kempas; Lennart von Wendt; Irma Järvelä; Daniel H. Geschwind; Leena Peltonen

Several genome‐wide screens have been performed in autism spectrum disorders resulting in the identification of numerous putative susceptibility loci. Analyses of pooled primary data should result in an increased sample size and the different study samples have a potential to strengthen the evidence for some earlier identified loci, reveal novel loci, and even to provide information of the general significance of the locus. The objective of this study was to search for potential susceptibility loci for autism, which are supported by two independent samples.


Journal of Clinical Oncology | 2005

Molecular Analysis of Familial Endometrial Carcinoma: A Manifestation of Hereditary Nonpolyposis Colorectal Cancer or a Separate Syndrome?

Miina Ollikainen; Wael M. Abdel-Rahman; Anu-Liisa Moisio; Annette Lindroos; Reetta Kariola; Irma Järvelä; Minna Pöyhönen; Ralf Bützow; Päivi Peltomäki

PURPOSE Familial clustering of endometrial carcinoma (EC) may occur as part of hereditary nonpolyposis colorectal cancer (HNPCC), a multiorgan cancer syndrome with mismatch repair (MMR) deficiency. Clustering of EC alone, termed as familial site-specific EC, may constitute a separate entity. Because its genetic basis is unknown, our purpose was to characterize such families molecularly. MATERIALS AND METHODS Twenty-three families with site-specific EC were identified among 519 consecutive patients diagnosed with EC during 1986 to 1997. Tumor tissues were examined for MMR protein expression by immunohistochemical (IHC) analysis, and MMR genes pinpointed by IHC changes were screened for germline mutations by exon-by-exon sequencing, multiplex ligation-dependent probe amplification, and direct tests for mutations common in the population. RESULTS Among 33 ECs from 23 families, MLH1 protein was lost in seven tumors (21%), MSH2 together with MSH6 was lost in four tumors (12%), and MSH6 alone was lost in five tumors (15%). A truncating germline mutation in MSH6 (3261insC) was identified in one family and a likely pathogenic missense mutation in MSH2 (D603N) was identified in another family. Among the original 519 patients, nine (all with colon cancer in the family) were diagnosed with HNPCC at the outset-six with MLH1 and three with MSH2 mutations. CONCLUSION Our study gives a minimum overall frequency of 2.1% (11 of 519) for germline MMR defects ascertained through EC in the index patients. The fact that only two of 23 families with site-specific EC (8.7%) had germline mutations in MMR genes suggests another as yet unknown etiology in most families with site-specific EC.


Genomics | 1991

Infantile form of neuronal ceroid lipofuscinosis (CLN1) maps to the short arm of chromosome 1

Irma Järvelä; Johanna Schleutker; Leena Haataja; Pirkko Santavuori; Lea Puhakka; Tuula Manninen; Aarno Palotie; Lodewijk A. Sandkuijl; Martin Renlund; R. White; Pertti Aula; Leena Peltonen

The neuronal ceroid lipofuscinoses (CLNs) are one of the most common progressive encephalopathies of childhood in Western countries. They are divided into three main types: infantile, late infantile, and juvenile. The inheritance of all forms is autosomal recessive, and the biochemical background is totally unknown. The infantile type (CLN1) demonstrates the earliest onset of symptoms and the most severe clinical course. CLN1 is enriched in the Finnish population with incidence of 1:20,000, and only about 50 cases have been reported from other parts of the world. We have collected 15 Finnish CLN1 families with one or two diseased children for a linkage analysis with polymorphic probes randomly localized on human chromosomes. After studying 42 polymorphic protein and DNA markers, we found definitive proof of linkage with three different probes on the short arm of chromosome 1, with maximum lod scores of 3.38 at theta = 0.00 (0.00-0.08) for D1S57 (pYNZ2), 3.56 at theta = 0.00 (0.00-0.09) for D1S7 (lambda MS1), and 3.56 at theta = 0.00 (0.00-0.11) for D1S79 (pCMM8). With the assignment of the CLN1 gene, our study demonstrates the power of multiallelic VNTR probes in the search for linkage of a rare recessive disorder using limited family material.

Collaboration


Dive into the Irma Järvelä's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seppo Meri

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge