Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irma Lemmens is active.

Publication


Featured researches published by Irma Lemmens.


Science | 2008

High-quality binary protein interaction map of the yeast interactome network

Haiyuan Yu; Pascal Braun; Muhammed A. Yildirim; Irma Lemmens; Kavitha Venkatesan; Julie M. Sahalie; Tomoko Hirozane-Kishikawa; Fana Gebreab; Nancy Li; Nicolas Simonis; Tong Hao; Jean François Rual; Amélie Dricot; Alexei Vazquez; Ryan R. Murray; Christophe Simon; Leah Tardivo; Stanley Tam; Nenad Svrzikapa; Changyu Fan; Anne-Sophie De Smet; Adriana Motyl; Michael E. Hudson; Juyong Park; Xiaofeng Xin; Michael E. Cusick; Troy Moore; Charlie Boone; Michael Snyder; Frederick P. Roth

Current yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome data sets, demonstrating that high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary interaction information. Because a large fraction of the yeast binary interactome remains to be mapped, we developed an empirically controlled mapping framework to produce a “second-generation” high-quality, high-throughput Y2H data set covering ∼20% of all yeast binary interactions. Both Y2H and affinity purification followed by mass spectrometry (AP/MS) data are of equally high quality but of a fundamentally different and complementary nature, resulting in networks with different topological and biological properties. Compared to co-complex interactome models, this binary map is enriched for transient signaling interactions and intercomplex connections with a highly significant clustering between essential proteins. Rather than correlating with essentiality, protein connectivity correlates with genetic pleiotropy.


Nature Methods | 2009

An experimentally derived confidence score for binary protein-protein interactions

Pascal Braun; Murat Tasan; Matija Dreze; Miriam Barrios-Rodiles; Irma Lemmens; Haiyuan Yu; Julie M. Sahalie; Ryan R. Murray; Luba Roncari; Anne Sophie de Smet; Kavitha Venkatesan; Jean François Rual; Jean Vandenhaute; Michael E. Cusick; Tony Pawson; David E. Hill; Jan Tavernier; Jeffrey L. Wrana; Frederick P. Roth; Marc Vidal

Information on protein-protein interactions is of central importance for many areas of biomedical research. At present no method exists to systematically and experimentally assess the quality of individual interactions reported in interaction mapping experiments. To provide a standardized confidence-scoring method that can be applied to tens of thousands of protein interactions, we have developed an interaction tool kit consisting of four complementary, high-throughput protein interaction assays. We benchmarked these assays against positive and random reference sets consisting of well documented pairs of interacting human proteins and randomly chosen protein pairs, respectively. A logistic regression model was trained using the data from these reference sets to combine the assay outputs and calculate the probability that any newly identified interaction pair is a true biophysical interaction once it has been tested in the tool kit. This general approach will allow a systematic and empirical assignment of confidence scores to all individual protein-protein interactions in interactome networks.


Nature Cell Biology | 2001

Design and application of a cytokine-receptor-based interaction trap.

Sven Eyckerman; Annick Verhee; José Van der Heyden; Irma Lemmens; Xaveer Van Ostade; Joël Vandekerckhove; Jan Tavernier

Ligand-induced clustering of type I cytokine receptor subunits leads to trans-phosphorylation and activation of associated cytosolic janus kinases (JAKs). In turn, JAKs phosphorylate tyrosine residues in the receptor tails, leading to recruitment and activation of signalling molecules. Among these, signal transducers and activators of transcription (STATs) are important in the direct transmission of signals to the nucleus. Here, we show that incorporation of an interaction trap in a signalling-deficient receptor allows the identification of protein–protein interactions, using a STAT-dependent complementation assay. Mammalian protein–protein interaction trap (MAPPIT) adds to existing yeast two-hybrid procedures, as originally explored by Fields and Song, and permits the detection of both modification-independent and of phosphorylation-dependent interactions in intact human cells. We also demonstrate that MAPPIT can be used to screen complex complementary DNA libraries, and using this approach, we identify cytokine-inducible SH2-containing protein (CIS) and suppressor of cytokine signalling-2 (SOCS-2) as interaction partners of the phosphotyrosine 402 (Tyr 402)-binding motif in the erythropoietin receptor (EpoR). Importantly, this approach places protein–protein interactions in their normal physiological context, and is especially applicable to the in situ analysis of signal transduction pathways.


Nature Communications | 2014

Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations

Yao-Cheng Lin; Morgane Boone; Leander Meuris; Irma Lemmens; Nadine Van Roy; Arne Soete; Joke Reumers; Matthieu Moisse; Stephane Plaisance; Radoje Drmanac; Jason Chen; Franki Speleman; Diether Lambrechts; Yves Van de Peer; Jan Tavernier; Nico Callewaert

The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect.


Nature Communications | 2014

Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.

Roser Corominas; Xinping Yang; Guan Ning Lin; Shuli Kang; Yun Shen; Lila Ghamsari; Martin P. Broly; Maria J. Rodriguez; Stanley Tam; Shelly A. Trigg; Changyu Fan; Song Yi; Murat Tasan; Irma Lemmens; Xingyan Kuang; Nan Zhao; Dheeraj Malhotra; Jacob J. Michaelson; Vladimir Vacic; Michael A. Calderwood; Frederick P. Roth; Jan Tavernier; Steve Horvath; Kourosh Salehi-Ashtiani; Dmitry Korkin; Jonathan Sebat; David E. Hill; Tong Hao; Marc Vidal; Lilia M. Iakoucheva

Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.


Retrovirology | 2012

Host-Pathogen Interactome Mapping for HTLV-1 and -2 Retroviruses

Nicolas Simonis; Jean François Rual; Irma Lemmens; Mathieu Boxus; Tomoko Hirozane-Kishikawa; Jean Stéphane Gatot; Amélie Dricot; Tong Hao; Didier Vertommen; Sebastien Legros; Sarah Daakour; Niels Klitgord; Maud Martin; Jean François Willaert; Franck Dequiedt; Vincent Navratil; Michael E. Cusick; Arsène Burny; Carine Van Lint; David E. Hill; Jan Tavernier; Richard Kettmann; Marc Vidal; Jean-Claude Twizere

BackgroundHuman T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression.ResultsWe employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway.ConclusionsThis study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.


Nature Methods | 2005

Reverse MAPPIT: screening for protein-protein interaction modifiers in mammalian cells

Sven Eyckerman; Irma Lemmens; Dominiek Catteeuw; Annick Verhee; Joël Vandekerckhove; Sam Lievens; Jan Tavernier

Interactions between proteins are at the heart of the cellular machinery. It is therefore not surprising that altered interaction profiles caused by aberrant protein expression patterns or by the presence of mutations can trigger cellular dysfunction, eventually leading to disease. Moreover, many viral and bacterial pathogens rely on protein-protein interactions to exert their damaging effects. Interfering with such interactions is an obvious pharmaceutical goal, but detailed insights into the protein binding properties as well as efficient screening platforms are needed. In this report, we describe a cytokine receptor–based assay with a positive readout to screen for disrupters of designated protein-protein interactions in intact mammalian cells and evaluate this concept using polypeptides as well as small organic molecules. These reverse mammalian protein-protein interaction trap (MAPPIT) screens were developed to monitor interactions between the erythropoietin receptor (EpoR) and suppressors of cytokine signaling (SOCS) proteins, between FKBP12 and ALK4, and between MDM2 and p53.


Trends in Biochemical Sciences | 2009

Mammalian two-hybrids come of age

Sam Lievens; Irma Lemmens; Jan Tavernier

A diverse series of mammalian two-hybrid technologies for the detection of protein-protein interactions have emerged in the past few years, complementing the established yeast two-hybrid approach. Given the mammalian background in which they operate, these assays open new avenues to study the dynamics of mammalian protein interaction networks, i.e. the temporal, spatial and functional modulation of protein-protein associations. In addition, novel assay formats are available that enable high-throughput mammalian two-hybrid applications, facilitating their use in large-scale interactome mapping projects. Finally, as they can be applied in drug discovery and development programs, these techniques also offer exciting new opportunities for biomedical research.


Neuron | 2015

Spatiotemporal 16p11.2 Protein Network Implicates Cortical Late Mid-Fetal Brain Development and KCTD13-Cul3-RhoA Pathway in Psychiatric Diseases

Guan Ning Lin; Roser Corominas; Irma Lemmens; Xinping Yang; Jan Tavernier; David E. Hill; Marc Vidal; Jonathan Sebat; Lilia M. Iakoucheva

The psychiatric disorders autism and schizophrenia have a strong genetic component, and copy number variants (CNVs) are firmly implicated. Recurrent deletions and duplications of chromosome 16p11.2 confer a high risk for both diseases, but the pathways disrupted by this CNV are poorly defined. Here we investigate the dynamics of the 16p11.2 network by integrating physical interactions of 16p11.2 proteins with spatiotemporal gene expression from the developing human brain. We observe profound changes in protein interaction networks throughout different stages of brain development and/or in different brain regions. We identify the late mid-fetal period of cortical development as most critical for establishing the connectivity of 16p11.2 proteins with their co-expressed partners. Furthermore, our results suggest that the regulation of the KCTD13-Cul3-RhoA pathway in layer 4 of the inner cortical plate is crucial for controlling brain size and connectivity and that its dysregulation by de novo mutations may be a potential determinant of 16p11.2 CNV deletion and duplication phenotypes.


Expert Review of Proteomics | 2010

Large-scale protein interactome mapping: strategies and opportunities

Sam Lievens; Sven Eyckerman; Irma Lemmens; Jan Tavernier

Interactions between proteins are central to any cellular process, and mapping these into a protein network is informative both for the function of individual proteins and the functional organization of the cell as a whole. Many strategies have been developed that are up to this task, and the last 10 years have seen the high-throughput application of a number of those in large-scale, sometimes proteome-wide, interactome mapping efforts. Although initially the quality of the data produced in these screening campaigns has been questioned, quality standards and empirical validation schemes are now in place to ensure high-quality data generation. Through their integration with other ‘omics’ data, interactomics datasets have proven highly valuable towards applications in different areas of clinical importance.

Collaboration


Dive into the Irma Lemmens's collaboration.

Top Co-Authors

Avatar

Jan Tavernier

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Simonis

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge