Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irmgard Förster is active.

Publication


Featured researches published by Irmgard Förster.


Cell | 2003

HIF-1α Is Essential for Myeloid Cell-Mediated Inflammation

Thorsten Cramer; Yuji Yamanishi; Björn E. Clausen; Irmgard Förster; Rafal Pawlinski; Nigel Mackman; Volker H. Haase; Rudolf Jaenisch; Maripat Corr; Victor Nizet; Gary S. Firestein; Hans Gerber; Napoleone Ferrara; Randall S. Johnson

Granulocytes and monocytes/macrophages of the myeloid lineage are the chief cellular agents of innate immunity. Here, we have examined the inflammatory response in mice with conditional knockouts of the hypoxia responsive transcription factor HIF-1alpha, its negative regulator VHL, and a known downstream target, VEGF. We find that activation of HIF-1alpha is essential for myeloid cell infiltration and activation in vivo through a mechanism independent of VEGF. Loss of VHL leads to a large increase in acute inflammatory responses. Our results show that HIF-1alpha is essential for the regulation of glycolytic capacity in myeloid cells: when HIF-1alpha is absent, the cellular ATP pool is drastically reduced. The metabolic defect results in profound impairment of myeloid cell aggregation, motility, invasiveness, and bacterial killing. This role for HIF-1alpha demonstrates its direct regulation of survival and function in the inflammatory microenvironment.


Transgenic Research | 1999

Conditional gene targeting in macrophages and granulocytes using LysMcre mice

Björn E. Clausen; C. Burkhardt; Walter Reith; R. Renkawitz; Irmgard Förster

Conditional mutagenesis in mice has recently been made possible through the combination of gene targeting techniques and site–directed mutagenesis, using the bacteriophage P1–derived Cre/loxP recombination system. The versatility of this approach depends on the availability of mouse mutants in which the recombinase Cre is expressed in the appropriate cell lineages or tissues. Here we report the generation of mice that express Cre in myeloid cells due to targeted insertion of the cre cDNA into their endogenous M lysozyme locus. In double mutant mice harboring both the LysMcre allele and one of two different loxP–flanked target genes tested, a deletion efficiency of 83–98 was determined in mature macrophages and near 100 in granulocytes. Partial deletion (16) could be detected in CD11c+ splenic dendritic cells which are closely related to the monocyte/macrophage lineage. In contrast, no significant deletion was observed in tail DNA or purified T and B cells. Taken together, LysMcre mice allow for both specific and highly efficient Cre–mediated deletion of loxP–flanked target genes in myeloid cells.


Immunity | 1999

Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils

Kiyoshi Takeda; Björn E. Clausen; Tsuneyasu Kaisho; Tohru Tsujimura; Nobuyuki Terada; Irmgard Förster; Shizuo Akira

We have generated mice with a cell type-specific disruption of the Stat3 gene in macrophages and neutrophils. The mutant mice are highly susceptible to endotoxin shock with increased production of inflammatory cytokines such as TNF alpha, IL-1, IFN gamma, and IL-6. Endotoxin-induced production of inflammatory cytokines is augmented because the suppressive effects of IL-10 on inflammatory cytokine production from macrophages and neutrophils are completely abolished. The mice show a polarized immune response toward the Th1 type and develop chronic enterocolitis with age. Taken together, Stat3 plays a critical role in deactivation of macrophages and neutrophils mainly exerted by IL-10.


Nature Immunology | 2003

SOCS3 negatively regulates IL-6 signaling in vivo.

Ben A. Croker; Danielle L. Krebs; Jian-Guo Zhang; Samuel Wormald; Tracy A. Willson; Edouard G. Stanley; Lorraine Robb; Christopher J. Greenhalgh; Irmgard Förster; Björn E. Clausen; Nicos A. Nicola; Donald Metcalf; Douglas J. Hilton; Andrew W. Roberts; Warren S. Alexander

Members of the suppressor of cytokine signaling (SOCS) family are potentially key physiological negative regulators of interleukin-6 (IL-6) signaling. To examine whether SOCS3 is involved in regulating this signaling, we have used conditional gene targeting to generate mice lacking Socs3 in the liver or in macrophages. We show that Socs3 deficiency results in prolonged activation of signal transducer and activator of transcription 1 (STAT1) and STAT3 after IL-6 stimulation but normal activation of STAT1 after stimulation with interferon-γ (IFN-γ). Conversely, IL-6-induced STAT activation is normal in Socs1-deficient cells, whereas STAT1 activation induced by IFN-γ is prolonged. Microarray analysis shows that the pattern of gene expression induced by IL-6 in Socs3-deficient livers mimics that induced by IFN-γ. Our data indicate that SOCS3 and SOCS1 have reciprocal functions in IL-6 and IFN-γ regulation and imply that SOCS3 has a role in preventing IFN-γ-like responses in cells stimulated by IL-6.


Nature | 2006

Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity

Olaf Gross; Andreas Gewies; Katrin Finger; Martin Schäfer; Tim Sparwasser; Christian Peschel; Irmgard Förster; Jürgen Ruland

Fungal infections are increasing worldwide due to the marked rise in immunodeficiencies including AIDS; however, immune responses to fungi are poorly understood. Dectin-1 is the major mammalian pattern recognition receptor for the fungal component zymosan. Dectin-1 represents the prototype of innate non-Toll-like receptors (TLRs) containing immunoreceptor tyrosine-based activation motifs (ITAMs) related to those of adaptive antigen receptors. Here we identify Card9 as a key transducer of Dectin-1 signalling. Although being dispensable for TLR/MyD88-induced responses, Card9 controls Dectin-1-mediated myeloid cell activation, cytokine production and innate anti-fungal immunity. Card9 couples to Bcl10 and regulates Bcl10–Malt1-mediated NF-κB activation induced by zymosan. Yet, Card9 is dispensable for antigen receptor signalling that uses Carma1 as a link to Bcl10–Malt1. Thus, our results define a novel innate immune pathway and indicate that evolutionarily distinct ITAM receptors in innate and adaptive immune cells use diverse adaptor proteins to engage selectively the conserved Bcl10–Malt1 module.


Journal of Clinical Investigation | 2003

Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice

Edwin Kanters; Manolis Pasparakis; Marion J. J. Gijbels; Monique N. Vergouwe; Iris Partouns-Hendriks; Remond J.A. Fijneman; Björn E. Clausen; Irmgard Förster; Mark M. Kockx; Klaus Rajewsky; Georg Kraal; Marten H. Hofker; Menno P.J. de Winther

Atherosclerosis is now generally accepted as a chronic inflammatory condition. The transcription factor NF-kappaB is a key regulator of inflammation, immune responses, cell survival, and cell proliferation. To investigate the role of NF-kappaB activation in macrophages during atherogenesis, we used LDL receptor-deficient mice with a macrophage-restricted deletion of IkappaB kinase 2 (IKK2), which is essential for NF-kappaB activation by proinflammatory signals. These mice showed increased atherosclerosis as quantified by lesion area measurements. In addition, the lesions were more advanced and showed more necrosis and increased cell number in early lesions. Southern blotting revealed that deletion of IKK2 was approximately 65% in macrophages, coinciding with a reduction of 50% in NF-kappaB activation, as compared with controls. In both groups, the expression of differentiation markers, uptake of bacteria, and endocytosis of modified LDL was similar. Upon stimulation with LPS, production of TNF was reduced by approximately 50% in IKK2-deleted macrophages. Interestingly, we also found a major reduction in the anti-inflammatory cytokine IL-10. Our data show that inhibition of the NF-kappaB pathway in macrophages leads to more severe atherosclerosis in mice, possibly by affecting the pro- and anti-inflammatory balance that controls the development of atherosclerosis.


Nature | 2014

Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

Tobias Bald; Thomas Quast; Jennifer Landsberg; Meri Rogava; Nicole Glodde; Dorys Lopez-Ramos; Judith Kohlmeyer; Stefanie Riesenberg; Debby van den Boorn-Konijnenberg; Cornelia Hömig-Hölzel; Raphael Reuten; Benjamin Schadow; Heike Weighardt; Daniela Wenzel; Iris Helfrich; Dirk Schadendorf; Wilhelm Bloch; Marco Bianchi; Claire Lugassy; Raymond L. Barnhill; Manuel Koch; Bernd K. Fleischmann; Irmgard Förster; Wolfgang Kastenmüller; Waldemar Kolanus; Michael Hölzel; Evelyn Gaffal; Thomas Tüting

Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma–endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere with metastatic progression.


Nature Cell Biology | 2007

Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1

Miki Nishio; Ken-ichi Watanabe; Junko Sasaki; Choji Taya; Shunsuke Takasuga; Ryota Iizuka; Tamas Balla; Masakazu Yamazaki; Hiroshi Watanabe; Reietsu Itoh; Shoko Kuroda; Yasuo Horie; Irmgard Förster; Tak W. Mak; Hiromichi Yonekawa; Josef M. Penninger; Yasunori Kanaho; Akira Suzuki; Takehiko Sasaki

Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) regulate cell migration, but the role of PtdIns(3,4,5)P3-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P3 phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P3 phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P3 metabolism in living primary cells, we generated a novel transgenic mouse (AktPH–GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P3. Time-lapse footage showed rapid, localized binding of AktPH–GFP to the leading edge membrane of chemotaxing ship1+/+AktPH–GFP Tg neutrophils, but only diffuse localization in ship1−/−AktPH–GFP Tg neutrophils. By directing where PtdIns(3,4,5)P3 accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.


Journal of Experimental Medicine | 2002

Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn's-like inflammatory bowel disease.

Dimitris Kontoyiannis; George Boulougouris; Menelaos Manoloukos; Maria Armaka; Maria Apostolaki; Theresa T. Pizarro; Alexey Kotlyarov; Irmgard Förster; Richard A. Flavell; Matthias Gaestel; Philip N. Tsichlis; Fabio Cominelli; George Kollias

Recent clinical evidence demonstrated the importance of tumor necrosis factor (TNF) in the development of Crohns disease. A mouse model for this pathology has previously been established by engineering defects in the translational control of TNF mRNA (Tnf Δ AREmouse). Here, we show that development of intestinal pathology in this model depends on Th1-like cytokines such as interleukin 12 and interferon γ and requires the function of CD8+ T lymphocytes. Tissue-specific activation of the mutant TNF allele by Cre/loxP-mediated recombination indicated that either myeloid- or T cell–derived TNF can exhibit full pathogenic capacity. Moreover, reciprocal bone marrow transplantation experiments using TNF receptor–deficient mice revealed that TNF signals are equally pathogenic when directed independently to either bone marrow–derived or tissue stroma cell targets. Interestingly, TNF-mediated intestinal pathology was exacerbated in the absence of MAPKAP kinase 2, yet strongly attenuated in a Cot/Tpl2 or JNK2 kinase–deficient genetic background. Our data establish the existence of redundant cellular pathways operating downstream of TNF in inflammatory bowel disease, and demonstrate the therapeutic potential of selective kinase blockade in TNF-mediated intestinal pathology.


Cancer Cell | 2008

TNFR1 Signaling and IFN-γ Signaling Determine whether T Cells Induce Tumor Dormancy or Promote Multistage Carcinogenesis

Nele Müller-Hermelink; Heidi Braumüller; Bernd J. Pichler; Thomas Wieder; Reinhard Mailhammer; Katrin Schaak; Kamran Ghoreschi; Amir S. Yazdi; Christian A. Sander; Ralph Mocikat; Markus Schwaiger; Irmgard Förster; Ralph Huss; Wolfgang A. Weber; Manfred Kneilling; Martin Röcken

Immune responses may arrest tumor growth by inducing tumor dormancy. The mechanisms leading to either tumor dormancy or promotion of multistage carcinogenesis by adaptive immunity are poorly characterized. Analyzing T antigen (Tag)-induced multistage carcinogenesis in pancreatic islets, we show that Tag-specific CD4+ T cells home selectively into the tumor microenvironment around the islets, where they either arrest or promote transition of dysplastic islets into islet carcinomas. Through combined TNFR1 signaling and IFN-gamma signaling, Tag-specific CD4+ T cells induce antiangiogenic chemokines and prevent alpha(v)beta(3) integrin expression, tumor angiogenesis, tumor cell proliferation, and multistage carcinogenesis, without destroying Tag-expressing islet cells. In the absence of either TNFR1 signaling or IFN-gamma signaling, the same T cells paradoxically promote angiogenesis and multistage carcinogenesis. Thus, tumor-specific T cells can directly survey multistage carcinogenesis through cytokine signaling.

Collaboration


Dive into the Irmgard Förster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Rajewsky

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catrin Albrecht

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge