Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iroise Dumontheil is active.

Publication


Featured researches published by Iroise Dumontheil.


Philosophical Transactions of the Royal Society B | 2007

Function and localization within rostral prefrontal cortex (area 10)

Paul W. Burgess; Sam J. Gilbert; Iroise Dumontheil

We propose that rostral prefrontal cortex (PFC; approximating area 10) supports a cognitive system that facilitates either stimulus-oriented (SO) or stimulus-independent (SI) attending. SO attending is the behaviour required to concentrate on current sensory input, whereas SI attending is the mental processing that accompanies self-generated or self-maintained thought. Regions of medial area 10 support processes related to the former, whilst areas of lateral area 10 support processes that enable the latter. Three lines of evidence for this ‘gateway hypothesis’ are presented. First, we demonstrate the predicted patterns of activation in area 10 during the performance of new tests designed to stress the hypothetical function. Second, we demonstrate area 10 activations during the performance of established functions (prospective memory, context memory), which should hypothetically involve the proposed attentional system. Third, we examine predictions about behaviour–activation patterns within rostral PFC that follow from the hypothesis. We show with meta-analysis of neuroimaging investigations that these predictions are supported across a wide variety of tasks, thus establishing a general principle for functional imaging studies of this large brain region. We then show that while the gateway hypothesis accommodates a large range of findings relating to the functional organization of area 10 along a medial–lateral dimension, there are further principles relating to other dimensions and functions. In particular, there is a functional dissociation between the anterior medial area 10, which supports processes required for SO attending, and the caudal medial area 10, which supports processes relating to mentalizing.


NeuroImage | 2011

Developmental influences on the neural bases of responses to social rejection: Implications of social neuroscience for education

Catherine L. Sebastian; Geoffrey Tan; Jonathan P. Roiser; Essi Viding; Iroise Dumontheil; Sarah-Jayne Blakemore

Relational aggression such as social rejection is common within school peer groups. Converging evidence suggests that adolescent females are particularly sensitive to social rejection. We used a novel fMRI adaptation of the Cyberball social rejection paradigm to investigate the neural response to social rejection in 19 mid-adolescent (aged 14-16) and 16 adult female participants. Across all participants, social exclusion (relative to inclusion) elicited a response in bilateral medial prefrontal cortex (mPFC) extending into ventral and subgenual anterior cingulate cortex and medial orbitofrontal cortex; and the left ventrolateral PFC (vlPFC); regions that have been associated in previous studies with social evaluation, negative affective processing, and affect regulation respectively. However, the exclusion-related response in right vlPFC, a region associated in previous studies with the regulation of rejection-related distress, was attenuated in adolescents. Within mPFC, greater activation during exclusion vs. inclusion was associated with greater self-reported susceptibility to peer influence in adolescents but not in adults. This suggests that the brains response to experimentally-induced social rejection relates to adolescent behaviour in real-world social interactions. We speculate about the potential implications of these findings for educational settings. In particular, functional development of affective circuitry during adolescence may influence social interaction within the school peer group.


Cerebral Cortex | 2012

Brain Activity during a Visuospatial Working Memory Task Predicts Arithmetical Performance 2 Years Later

Iroise Dumontheil; Torkel Klingberg

Visuospatial working memory (WM) capacity is highly correlated with mathematical reasoning abilities and can predict future development of arithmetical performance. Activity in the intraparietal sulcus (IPS) during visuospatial WM tasks correlates with interindividual differences in WM capacity. This region has also been implicated in numerical representation, and its structure and activity reflect arithmetical performance impairments (e.g., dyscalculia). We collected behavioral (N = 246) and neuroimaging data (N = 46) in a longitudinal sample to test whether IPS activity during a visuospatial WM task could provide more information than psychological testing alone and predict arithmetical performance 2 years later in healthy participants aged 6-16 years. Nonverbal reasoning and verbal and visuospatial WM measures were found to be independent predictors of arithmetical outcome. In addition, WM activation in the left IPS predicted arithmetical outcome independently of behavioral measures. A logistic model including both behavioral and imaging data showed improved sensitivity by correctly classifying more than twice as many children as poor arithmetical performers after 2 years than a model with behavioral measures only. These results demonstrate that neuroimaging data can provide useful information in addition to behavioral assessments and be used to improve the identification of individuals at risk of future low academic performance.


Biological Psychiatry | 2011

Influence of the COMT Genotype on Working Memory and Brain Activity Changes During Development

Iroise Dumontheil; Chantal Roggeman; Tim Ziermans; Myriam Peyrard-Janvid; Hans Matsson; Juha Kere; Torkel Klingberg

BACKGROUND The Valine158Methionine (Val158Met) polymorphism of the COMT gene leads to lower enzymatic activity and higher dopamine availability in Met carriers. The Met allele is associated with better performance and reduced prefrontal cortex activation during working memory (WM) tasks in adults. Dopaminergic system changes during adolescence may lead to a reduction of basal dopamine levels, potentially affecting Met allele benefits during development. METHODS We investigated the association of COMT genotype with behavioral (n = 322) and magnetic resonance imaging data (n = 81-84) collected during performance of a visuospatial WM task and potential changes in these effects during development (reflected in age × genotype interactions). Data were collected from a cross-sectional and longitudinal typically developing sample of 6- to 20-year-olds. RESULTS Visuospatial WM capacity exhibited an age × genotype interaction, with a benefit of the Met allele emerging after 10 years of age. There was a parallel age × genotype interaction on WM-related activation in the right inferior frontal gyrus and intraparietal sulcus (IPS), with increases in activation with age in the Val/Val group only. Main effects of COMT genotype were also observed in the IPS, with greater gray matter volumes bilaterally and greater right IPS activation in the Val/Val group compared with the Met carriers. CONCLUSIONS These results suggest that COMT genotype effects on WM brain activity and behavior are not static during development. The full developmental picture should be considered when trying to understand the impact of genetic polymorphisms on the mature cognition of healthy adult or psychiatric populations.


Developmental Medicine & Child Neurology | 2008

Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders.

Iroise Dumontheil; Paul W. Burgess; Sarah-Jayne Blakemore

Information on the development and functions of rostral prefrontal cortex (PFC), or Brodmann area 10, has been gathered from different fields, from anatomical development to functional neuroimaging in adults, and put forward in relation to three particular cognitive and behavioural disorders. Rostral PFC is larger and has a lower cell density in humans than in other primates. It also has a large number of dendritic spines per cell and numerous connections to the supramodal cortex. These characteristics suggest that rostral PFC is likely to support processes of integration or coordination of inputs that are particularly developed in humans. The development of rostral PFC is prolonged, with decreases in grey matter and synaptic density continuing into adolescence. Functions attributed to rostral PFC, such as prospective memory, seem similarly to follow a prolonged development until adulthood. Neuroimaging studies have generally found a reduced recruitment of rostral PFC, for example in tasks requiring response inhibition, in adults compared with children or adolescents, which is consistent with maturation of grey matter. The examples of autism, attention‐deficit‐hyperactivity disorder, and schizophrenia show that rostral PFC could be affected in several disorders as a result of the susceptibility of its prolonged maturation to developmental abnormalities.


Consciousness and Cognition | 2013

The development of metacognitive ability in adolescence

Leonora G. Weil; Stephen M. Fleming; Iroise Dumontheil; Emma J. Kilford; Rimona S. Weil; Geraint Rees; R. J. Dolan; Sarah-Jayne Blakemore

Highlights ► Metacognition refers to the knowledge we have of our own cognitive processes. ► We investigated the development of metacognition between 11 and 41 years. ► Participants carried out a visual decision task and rated confidence in their decisions. ► While task performance was stable, metacognition improved between 11 and 17. ► Metacognition shows a prolonged developmental trajectory during adolescence.


Developmental Science | 2010

Development of Relational Reasoning during Adolescence.

Iroise Dumontheil; Rachael Houlton; Kalina Christoff; Sarah-Jayne Blakemore

Non-linear changes in behaviour and in brain activity during adolescent development have been reported in a variety of cognitive tasks. These developmental changes are often interpreted as being a consequence of changes in brain structure, including non-linear changes in grey matter volumes, which occur during adolescence. However, very few studies have attempted to combine behavioural, functional and structural data. This multi-method approach is the one we took in the current study, which was designed to investigate developmental changes in behaviour and brain activity during relational reasoning, the simultaneous integration of multiple relations. We used a relational reasoning task known to recruit rostrolateral prefrontal cortex (RLPFC), a region that undergoes substantial structural changes during adolescence. The task was administered to female participants in a behavioural (N = 178, 7-27 years) and an fMRI study (N = 37, 11-30 years). Non-linear changes in accuracy were observed, with poorer performance during mid-adolescence. fMRI and VBM results revealed a complex picture of linear and possibly non-linear changes with age. Performance and structural changes partly accounted for changes with age in RLPFC and medial superior frontal gyrus activity but not for a decrease in activation in the anterior insula/frontal operculum between mid-adolescence and adulthood. These functional changes might instead reflect the maturation of neurocognitive strategies.


Journal of Cognitive Neuroscience | 2011

Assembly and use of new task rules in fronto-parietal cortex

Iroise Dumontheil; Russell Thompson; John S. Duncan

Severe capacity limits, closely associated with fluid intelligence, arise in learning and use of new task rules. We used fMRI to investigate these limits in a series of multirule tasks involving different stimuli, rules, and response keys. Data were analyzed both during presentation of instructions and during later task execution. Between tasks, we manipulated the number of rules specified in task instructions, and within tasks, we manipulated the number of rules operative in each trial block. Replicating previous results, rule failures were strongly predicted by fluid intelligence and increased with the number of operative rules. In fMRI data, analyses of the instruction period showed that the bilateral inferior frontal sulcus, intraparietal sulcus, and presupplementary motor area were phasically active with presentation of each new rule. In a broader range of frontal and parietal regions, baseline activity gradually increased as successive rules were instructed. During task performance, we observed contrasting fronto-parietal patterns of sustained (block-related) and transient (trial-related) activity. Block, but not trial, activity showed effects of task complexity. We suggest that, as a new task is learned, a fronto-parietal representation of relevant rules and facts is assembled for future control of behavior. Capacity limits in learning and executing new rules, and their association with fluid intelligence, may be mediated by this load-sensitive fronto-parietal network.


Psychonomic Bulletin & Review | 2012

Task rules, working memory, and fluid intelligence

John S. Duncan; Moritz Schramm; Russell Thompson; Iroise Dumontheil

Many varieties of working memory have been linked to fluid intelligence. In Duncan et al. (Journal of Experimental Psychology:General 137:131–148, 2008), we described limited working memory for new task rules: When rules are complex, some may fail in their control of behavior, though they are often still available for explicit recall. Unlike other kinds of working memory, load is determined in this case not by real-time performance demands, but by the total complexity of the task instructions. Here, we show that the correlation with fluid intelligence is stronger for this aspect of working memory than for several other, more traditional varieties—including simple and complex spans and a test of visual short-term memory. Any task, we propose, requires construction of a mental control program that aids in segregating and assembling multiple task parts and their controlling rules. Fluid intelligence is linked closely to the efficiency of constructing such programs, especially when behavior is complex and novel.


Developmental Cognitive Neuroscience | 2014

Development of abstract thinking during childhood and adolescence: The role of rostrolateral prefrontal cortex

Iroise Dumontheil

Highlights • Rostral prefrontal cortex (RPFC) supports self-generated, abstract thought processing.• Flexibly attending towards and processing abstract thoughts develop in adolescence.• RPFC activation becomes more specific to relational integration during development.• Prospective memory development remains to be further studied using neuroimaging.• Training of abstract thinking, e.g. reasoning, may have implication for education.

Collaboration


Dive into the Iroise Dumontheil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam J. Gilbert

University College London

View shared research outputs
Top Co-Authors

Avatar

Paul W. Burgess

University College London

View shared research outputs
Top Co-Authors

Avatar

Emma J. Kilford

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Apperly

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Elliott

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge