Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irute Meskiene is active.

Publication


Featured researches published by Irute Meskiene.


Cell | 2007

Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux

Marta Michniewicz; Marcelo Kennel Zago; Lindy Abas; Dolf Weijers; Alois Schweighofer; Irute Meskiene; Marcus G. Heisler; Carolyn Ohno; Jing Zhang; Fang Huang; Rebecca Schwab; Detlef Weigel; Elliot M. Meyerowitz; Christian Luschnig; Remko Offringa; Jiří Friml

In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely unidentified, with the PINOID kinase being the only known molecular component. Here, we identify PP2A phosphatase as an important regulator of PIN apical-basal targeting and auxin distribution. Genetic analysis, localization, and phosphorylation studies demonstrate that PP2A and PINOID both partially colocalize with PINs and act antagonistically on the phosphorylation state of their central hydrophilic loop, hence mediating PIN apical-basal polar targeting. Thus, in plants, polar sorting by the reversible phosphorylation of cargos allows for their conditional delivery to specific intracellular destinations. In the case of PIN proteins, this mechanism enables switches in the direction of intercellular auxin fluxes, which mediate differential growth, tissue patterning, and organogenesis.


The Plant Cell | 1997

Wounding Induces the Rapid and Transient Activation of a Specific MAP Kinase Pathway.

László Bögre; Wilco Ligterink; Irute Meskiene; Patrick J. Barker; Erwin Heberle-Bors; Neville S. Huskisson; Heribert Hirt

Mechanical injury in plants induces responses that are involved not only in healing but also in defense against a potential pathogen. To understand the intracellular signaling mechanism of wounding, we have investigated the involvement of protein kinases. Using specific antibodies, we showed that wounding alfalfa leaves specifically induces the transient activation of the p44MMK4 kinase, which belongs to the family of mitogen-activated protein kinases. Whereas activation of the MMK4 pathway is a post-translational process and was not blocked by [alpha]-amanitin and cycloheximide, inactivation depends on de novo transcription and translation of a protein factor(s). After wound-induced activation, the MMK4 pathway was subject to a refractory period of 25 min, during which time restimulation was not possible, indicating that the inactivation mechanism is only transiently active. After activation of the p44MMK4 kinase by wounding, transcript levels of the MMK4 gene increased, suggesting that the MMK4 gene may be a direct target of the MMK4 pathway. In contrast, transcripts of the wound-inducible MsWIP gene, encoding a putative proteinase inhibitor, were detected only several hours after wounding. Abscisic acid, methyl jasmonic acid, and electrical activity are known to mediate wound signaling in plants. However, none of these factors was able to activate the p44MMK4 kinase in the absence of wounding, suggesting that the MMK4 pathway acts independently of these signals.


The Plant Cell | 2007

The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in Arabidopsis

Alois Schweighofer; Vaiva Kazanaviciute; Elisabeth Scheikl; Markus Teige; Robert Doczi; Heribert Hirt; Manfred Schwanninger; Merijn R. Kant; Robert C. Schuurink; Felix Mauch; Antony Buchala; Francesca Cardinale; Irute Meskiene

Wound signaling pathways in plants are mediated by mitogen-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis thaliana, the transmission of wound signals by MAPKs has been the subject of detailed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-responsive MAPKs MPK4 and MPK6. Mutant ap2c1 plants produce significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetranychus urticae). Plants with increased AP2C1 levels display lower wound activation of MAPKs, reduced ethylene production, and compromised innate immunity against the necrotrophic pathogen Botrytis cinerea. Our results demonstrate a key role for the AP2C1 phosphatase in regulating stress hormone levels, defense responses, and MAPK activities in Arabidopsis and provide evidence that the activity of AP2C1 might control the plants response to B. cinerea.


The Plant Cell | 2000

SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK.

Stefan Kiegerl; Francesca Cardinale; Christine Siligan; Andrea Gross; Emmanuel Baudouin; Aneta Liwosz; Staffan Eklöf; Sandra Till; László Bögre; Heribert Hirt; Irute Meskiene

In eukaryotes, mitogen-activated protein kinases (MAPKs) play key roles in the transmission of external signals, such as mitogens, hormones, and different stresses. MAPKs are activated by MAPK kinases through phosphorylation of MAPKs at both the threonine and tyrosine residues of the conserved TXY activation motif. In plants, several MAPKs are involved in signaling of hormones, stresses, cell cycle, and developmental cues. Recently, we showed that salt stress–induced MAPK (SIMK) is activated when alfalfa cells are exposed to hyperosmotic conditions. Here, we report the isolation and characterization of the alfalfa MAPK kinase SIMKK (SIMK kinase). SIMKK encodes an active protein kinase that interacts specifically with SIMK, but not with three other MAPKs, in the yeast two-hybrid system. Recombinant SIMKK specifically activates SIMK by phosphorylating both the threonine and tyrosine residues in the activation loop of SIMK. SIMKK contains a putative MAPK docking site at the N terminus that is conserved in mammalian MAPK kinases, transcription factors, and phosphatases. Removal of the MAPK docking site of SIMKK partially compromises but does not completely abolish interaction with SIMK, suggesting that other domains of SIMKK also are involved in MAPK binding. In transient expression assays, SIMKK specifically activates SIMK but not two other MAPKs. Moreover, SIMKK enhances the salt-induced activation of SIMK. These data suggest that the salt-induced activation of SIMK is mediated by the dual-specificity protein kinase SIMKK.


The Plant Cell | 1994

Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation.

Wei-Cai Yang; C. de Blank; Irute Meskiene; Heribert Hirt; J Bakker; A. van Kammen; H. Franssen; T. Bisseling

Rhizobia induce the formation of root nodules on the roots of leguminous plants. In temperate legumes, nodule organogenesis starts with the induction of cell divisions in regions of the root inner cortex opposite protoxylem poles, resulting in the formation of nodule primordia. It has been postulated that the susceptibility of these inner cortical cells to Rhizobium nodulation (Nod) factors is conferred by an arrest at a specific stage of the cell cycle. Concomitantly with the formation of nodule primordia, cytoplasmic rearrangement occurs in the outer cortex. Radially aligned cytoplasmic strands form bridges, and these have been called preinfection threads. It has been proposed that the cytoplasmic bridges are related to phragmosomes. By studying the in situ expression of the cell cycle genes cyc2, H4, and cdc2 in pea and alfalfa root cortical cells after inoculation with Rhizobium or purified Nod factors, we show that the susceptibility of inner cortical cells to Rhizobium is not conferred by an arrest at the G2 phase and that the majority of the dividing cells are arrested at the G0/G1 phase. Furthermore, the outer cortical cells forming a preinfection thread enter the cell cycle although they do not divide.


The EMBO Journal | 2002

Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth

Jozef Šamaj; Miroslav Ovečka; Andrej Hlavacka; Fatma Lecourieux; Irute Meskiene; Péter Lénárt; Jan Salaj; Dieter Volkmann; László Bögre; František Baluška; Heribert Hirt

Mitogen‐activated protein kinases (MAPKs) are involved in stress signaling to the actin cytoskeleton in yeast and animals. We have analyzed the function of the stress‐activated alfalfa MAP kinase SIMK in root hairs. In epidermal cells, SIMK is predominantly nuclear. During root hair formation, SIMK was activated and redistributed from the nucleus into growing tips of root hairs possessing dense F‐actin meshworks. Actin depolymerization by latrunculin B resulted in SIMK relocation to the nucleus. Conversely, upon actin stabilization with jasplakinolide, SIMK co‐localized with thick actin cables in the cytoplasm. Importantly, latrunculin B and jasplakinolide were both found to activate SIMK in a root‐derived cell culture. Loss of tip‐focused SIMK and actin was induced by the MAPK kinase inhibitor UO 126 and resulted in aberrant root hairs. UO 126 inhibited targeted vesicle trafficking and polarized growth of root hairs. In contrast, overexpression of gain‐of‐function SIMK induced rapid tip growth of root hairs and could bypass growth inhibition by UO 126. These data indicate that SIMK plays a crucial role in root hair tip growth.


Plant Molecular Biology | 2000

MAP kinase pathways: molecular plug-and-play chips for the cell

Irute Meskiene; Heribert Hirt

Mitogen-activated protein kinase (MAPK) pathways transduce a large variety of external signals in mammals, unicellular eukaryotes, and plants. In recent years, plant MAPK pathways have attracted increasing interest resulting in the isolation of a large number of different components. Studies on the function of these components have revealed that MAPKs play important roles in the response to a broad variety of stresses, but also in the signaling of plant hormones and the cell cycle. Besides giving an update on recent results, the success and logic of MAPK-based signal transduction cascades is discussed.


FEBS Journal | 2013

Type 2C protein phosphatases in plants

Stefan Fuchs; Erwin Grill; Irute Meskiene; Alois Schweighofer

Type 2C protein phosphatases (PP2Cs) form a structurally unique class of Mg2+‐/Mn2+‐dependent enzymes. PP2Cs are evolutionary conserved from prokaryotes to higher eukaryotes and play a prominent role in stress signalling. In this review, we focus on the evolution, function and regulation of the plant PP2Cs. Members of a subclass of plant PP2Cs counteract mitogen‐activated protein kinase pathways, whereas members of other subfamilies function as co‐receptors for the phytohormone abscisic acid. Recent structural analyses of abscisic acid receptors have elucidated the mode of ligand‐dependent regulation and substrate targeting.


Plant Physiology | 1997

The cdc2Ms Kinase Is Differently Regulated in the Cytoplasm and in the Nucleus

László Bögre; Karin Zwerger; Irute Meskiene; Pavla Binarová; Vilmos Csizmadia; Christian Planck; Ernst Wagner; Heribert Hirt; Erwin Heberle-Bors

To study a cyclin-dependent kinase (CDK) from alfalfa (Medicago sativa L.), an antibody was raised against the C-terminal 16 amino acids of the protein cdc2aMs. The cdc2Ms protein was immunopurified with this antibody and its histone kinase activity was measured. The cdc2Ms kinase is activated at the G1/S transition when phosphate-starved cells from the G0 phase re-enter the cell cycle and remain active as cells transit the S, G2, and M phases, indicating that the same CDK regulates all of these phases in alfalfa. In contrast, when cdc2Ms kinase was purified by binding to p13suc1, it was active only in the G2 and M phases. In immunoblots the C-terminal antibody detected an equal amount of the cdc2Ms protein in the cytoplasm and in the nucleus. By indirect immunofluorescence, however, the cytoplasmic form of cdc2Ms could not be found in the S phase of the cells, indicating that the epitope for the cdc2 antibody is not accessible. Binding of putative inhibitor proteins to cdc2 was shown by inactivation of purified plant CDK when cell extracts were added. Furthermore, purified CDK inhibitors, such as the mouse p27kip1 and the yeast p40sic1, blocked the purified plant CDK activity.


PLOS ONE | 2010

MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis

Julija Umbrasaite; Alois Schweighofer; Vaiva Kazanaviciute; Zoltán Magyar; Zahra Ayatollahi; Verena Unterwurzacher; Chonnanit Choopayak; Justyna Boniecka; James Augustus Henry Murray; László Bögre; Irute Meskiene

In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.

Collaboration


Dive into the Irute Meskiene's collaboration.

Top Co-Authors

Avatar

Heribert Hirt

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alois Schweighofer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heribert Hirt

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge