Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irving C. Allen is active.

Publication


Featured researches published by Irving C. Allen.


Immunity | 2009

The NLRP3 Inflammasome Mediates in vivo Innate Immunity to Influenza A Virus through Recognition of Viral RNA

Irving C. Allen; Margaret A. Scull; Chris B. Moore; Eda K. Holl; Erin McElvania-TeKippe; Debra J. Taxman; Elizabeth H. Guthrie; Raymond J. Pickles; Jenny P.-Y. Ting

The nucleotide-binding domain and leucine-rich-repeat-containing (NLR) family of pattern-recognition molecules mediate host immunity to various pathogenic stimuli. However, in vivo evidence for the involvement of NLR proteins in viral sensing has not been widely investigated and remains controversial. As a test of the physiologic role of the NLR molecule NLRP3 during RNA viral infection, we explored the in vivo role of NLRP3 inflammasome components during influenza virus infection. Mice lacking Nlrp3, Pycard, or caspase-1, but not Nlrc4, exhibited dramatically increased mortality and a reduced immune response after exposure to the influenza virus. Utilizing analogs of dsRNA (poly(I:C)) and ssRNA (ssRNA40), we demonstrated that an NLRP3-mediated response could be activated by RNA species. Mechanistically, NLRP3 inflammasome activation by the influenza virus was dependent on lysosomal maturation and reactive oxygen species (ROS). Inhibition of ROS induction eliminated IL-1beta production in animals during influenza infection. Together, these data place the NLRP3 inflammasome as an essential component in host defense against influenza infection through the sensing of viral RNA.


Journal of Experimental Medicine | 2010

The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer

Irving C. Allen; Erin McElvania TeKippe; Rita Marie T Woodford; Joshua M. Uronis; Eda K. Holl; Arlin B. Rogers; Hans H. Herfarth; Christian Jobin; Jenny P.-Y. Ting

Colitis-associated cancer (CAC) is a major complication of inflammatory bowel diseases. We show that components of the inflammasome are protective during acute and recurring colitis and CAC in the dextran sulfate sodium (DSS) and azoxymethane + DSS models. Mice lacking the inflammasome adaptor protein PYCARD (ASC) and caspase-1 demonstrate increased disease outcome, morbidity, histopathology, and polyp formation. The increased tumor burden is correlated with attenuated levels of IL-1β and IL-18 at the tumor site. To decipher the nucleotide-binding domain, leucine-rich-repeat-containing (NLR) component that is involved in colitis and CAC, we assessed Nlrp3 and Nlrc4 deficient mice. Nlrp3−/− mice showed an increase in acute and recurring colitis and CAC, although the disease outcome was less severe in Nlrp3−/− mice than in Pycard−/− or Casp1−/− animals. No significant differences were observed in disease progression or outcome in Nlrc4−/− mice compared with similarly treated wild-type animals. Bone marrow reconstitution experiments show that Nlrp3 gene expression and function in hematopoietic cells, rather than intestinal epithelial cells or stromal cells, is responsible for protection against increased tumorigenesis. These data suggest that the inflammasome functions as an attenuator of colitis and CAC.


PLOS ONE | 2009

Staphylococcus aureus α-Hemolysin Activates the NLRP3-Inflammasome in Human and Mouse Monocytic Cells

Robin R. Craven; Xi Gao; Irving C. Allen; Denis Gris; Juliane Bubeck Wardenburg; Erin McElvania-TeKippe; Jenny P.-Y. Ting; Joseph A. Duncan

Community Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA) causes severe necrotizing infections of the skin, soft tissues, and lungs. Staphylococcal α-hemolysin is an essential virulence factor in mouse models of CA-MRSA necrotizing pneumonia. S. aureus α-hemolysin has long been known to induce inflammatory signaling and cell death in host organisms, however the mechanism underlying these signaling events were not well understood. Using highly purified recombinant α-hemolysin, we now demonstrate that α-hemolysin activates the Nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 protein (NLRP3)-inflammasome, a host inflammatory signaling complex involved in responses to pathogens and endogenous danger signals. Non-cytolytic mutant α-hemolysin molecules fail to elicit NLRP3-inflammasome signaling, demonstrating that the responses are not due to non-specific activation of this innate immune signaling system by bacterially derived proteins. In monocyte-derived cells from humans and mice, inflammasome assembly in response to α-hemolysin results in activation of the cysteine proteinase, caspase-1. We also show that inflammasome activation by α-hemolysin works in conjunction with signaling by other CA-MRSA-derived Pathogen Associated Molecular Patterns (PAMPs) to induce secretion of pro-inflammatory cytokines IL-1β and IL-18. Additionally, α-hemolysin induces cell death in these cells through an NLRP3-dependent program of cellular necrosis, resulting in the release of endogenous pro-inflammatory molecules, like the chromatin-associated protein, High-mobility group box 1 (HMGB1). These studies link the activity of a major S. aureus virulence factor to a specific host signaling pathway. The cellular events linked to inflammasome activity have clear relevance to the disease processes associated with CA-MRSA including tissue necrosis and inflammation.


Journal of Immunology | 2009

NLRP3 (NALP3, Cryopyrin) Facilitates In Vivo Caspase-1 Activation, Necrosis, and HMGB1 Release via Inflammasome-Dependent and -Independent Pathways

Stephen B. Willingham; Irving C. Allen; Daniel T. Bergstralh; Willie June Brickey; Max Tze Han Huang; Debra J. Taxman; Joseph A. Duncan; Jenny P.-Y. Ting

Bacterial infection elicits a range of beneficial as well as detrimental host inflammatory responses. Key among these responses are macrophage/monocyte necrosis, release of the proinflammatory factor high-mobility group box 1 protein (HMGB1), and induction of the cytokine IL-1. Although the control of IL-1β has been well studied, processes that control macrophage cell death and HMGB1 release in animals are poorly understood. This study uses Klebsiella pneumonia as a model organism because it elicits all three responses in vivo. The regulation of these responses is studied in the context of the inflammasome components NLRP3 and ASC, which are important for caspase-1 activation and IL-1β release. Using a pulmonary infection model that reflects human infection, we show that K. pneumonia-induced mouse macrophage necrosis, HMGB1, and IL-1β release are dependent on NLRP3 and ASC. K. pneumoniae infection of mice lacking Nlrp3 results in decreased lung inflammation and reduced survival relative to control, indicating the overall protective role of this gene. Macrophage/monocyte necrosis and HMGB1 release are controlled independently of caspase-1, suggesting that the former two responses are separable from inflammasome-associated functions. These results provide critical in vivo validation that the physiologic role of NLRP3 and ASC is not limited to inflammasome formation.


PLOS ONE | 2012

TLR2/MyD88/NF-κB Pathway, Reactive Oxygen Species, Potassium Efflux Activates NLRP3/ASC Inflammasome during Respiratory Syncytial Virus Infection

Jesus A. Segovia; Ahmed Sabbah; Victoria Mgbemena; Su Yu Tsai; Te Hung Chang; Ian R. Morris; Irving C. Allen; Jenny P.-Y. Ting; Santanu Bose

Human respiratory syncytial virus (RSV) constitute highly pathogenic virus that cause severe respiratory diseases in newborn, children, elderly and immuno-compromised individuals. Airway inflammation is a critical regulator of disease outcome in RSV infected hosts. Although “controlled” inflammation is required for virus clearance, aberrant and exaggerated inflammation during RSV infection results in development of inflammatory diseases like pneumonia and bronchiolitis. Interleukin-1β (IL-1β) plays an important role in inflammation by orchestrating the pro-inflammatory response. IL-1β is synthesized as an immature pro-IL-1β form. It is cleaved by activated caspase-1 to yield mature IL-1β that is secreted extracellularly. Activation of caspase-1 is mediated by a multi-protein complex known as the inflammasome. Although RSV infection results in IL-1β release, the mechanism is unknown. Here in, we have characterized the mechanism of IL-1β secretion following RSV infection. Our study revealed that NLRP3/ASC inflammasome activation is crucial for IL-1β production during RSV infection. Further studies illustrated that prior to inflammasome formation; the “first signal” constitutes activation of toll-like receptor-2 (TLR2)/MyD88/NF-κB pathway. TLR2/MyD88/NF-κB signaling is required for pro-IL-1β and NLRP3 gene expression during RSV infection. Following expression of these genes, two “second signals” are essential for triggering inflammasome activation. Intracellular reactive oxygen species (ROS) and potassium (K+) efflux due to stimulation of ATP-sensitive ion channel promote inflammasome activation following RSV infection. Thus, our studies have underscored the requirement of TLR2/MyD88/NF-κB pathway (first signal) and ROS/potassium efflux (second signal) for NLRP3/ASC inflammasome formation, leading to caspase-1 activation and subsequent IL-1β release during RSV infection.


The Journal of Infectious Diseases | 2012

Staphylococcus aureus α-Hemolysin Mediates Virulence in a Murine Model of Severe Pneumonia Through Activation of the NLRP3 Inflammasome

Chahnaz Kebaier; Robin R. Chamberland; Irving C. Allen; Xi Gao; Peter M. Broglie; Joshua D. Hall; Corey M. Jania; Claire M. Doerschuk; Stephen L. Tilley; Joseph A. Duncan

Staphylococcus aureus is a dangerous pathogen that can cause necrotizing infections characterized by massive inflammatory responses and tissue destruction. Staphylococcal α-hemolysin is an essential virulence factor in severe S. aureus pneumonia. It activates the nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 (NLRP3) inflammasome to induce production of interleukin-1β and programmed necrotic cell death. We sought to determine the role of α-hemolysin-mediated activation of NLRP3 in the pathogenesis of S. aureus pneumonia. We show that α-hemolysin activates the NLRP3 inflammasome during S. aureus pneumonia, inducing necrotic pulmonary injury. Moreover, Nlrp3(-/-) mice have less-severe pneumonia. Pulmonary injury induced by isolated α-hemolysin or live S. aureus is independent of interleukin-1β signaling, implicating NLRP3-induced necrosis in the pathogenesis of severe infection. This work demonstrates the exploitation of host inflammatory signaling by S. aureus and suggests the NLRP3 inflammasome as a potential target for pharmacologic interventions in severe S. aureus infections.


Journal of Immunology | 2010

Cutting Edge: NLRP12 Controls Dendritic and Myeloid Cell Migration To Affect Contact Hypersensitivity

Janelle C. Arthur; John D. Lich; Zhengmao Ye; Irving C. Allen; Denis Gris; Justin E. Wilson; Monika Schneider; Kelly E. Roney; Brian P. O'Connor; Chris B. Moore; Amy C. Morrison; Fayyaz S. Sutterwala; John Bertin; Beverly H. Koller; Zhi Liu; Jenny P.-Y. Ting

Nucleotide-binding domain leucine-rich repeat (NLR) proteins are regulators of inflammation and immunity. Although first described 8 y ago, a physiologic role for NLRP12 has remained elusive until now. We find that murine Nlrp12, an NLR linked to atopic dermatitis and hereditary periodic fever in humans, is prominently expressed in dendritic cells (DCs) and neutrophils. Nlrp12-deficient mice exhibit attenuated inflammatory responses in two models of contact hypersensitivity that exhibit features of allergic dermatitis. This cannot be attributed to defective Ag processing/presentation, inflammasome activation, or measurable changes in other inflammatory cytokines. Rather, Nlrp12−/− DCs display a significantly reduced capacity to migrate to draining lymph nodes. Both DCs and neutrophils fail to respond to chemokines in vitro. These findings indicate that NLRP12 is important in maintaining neutrophils and peripheral DCs in a migration-competent state.


PLOS ONE | 2010

Granuloma Formation and Host Defense in Chronic Mycobacterium tuberculosis Infection Requires PYCARD/ASC but Not NLRP3 or Caspase-1

Erin McElvania TeKippe; Irving C. Allen; Paul Hulseberg; Jonathan Tabb Sullivan; Jessica R. McCann; Matyas Sandor; Miriam Braunstein; Jenny P.-Y. Ting

The NLR gene family mediates host immunity to various acute pathogenic stimuli, but its role in chronic infection is not known. This paper addressed the role of NLRP3 (NALP3), its adaptor protein PYCARD (ASC), and caspase-1 during infection with Mycobacterium tuberculosis (Mtb). Mtb infection of macrophages in culture induced IL-1β secretion, and this requires the inflammasome components PYCARD, caspase-1, and NLRP3. However, in vivo Mtb aerosol infection of Nlrp3−/−, Casp-1−/−, and WT mice showed no differences in pulmonary IL-1β production, bacterial burden, or long-term survival. In contrast, a significant role was observed for Pycard in host protection during chronic Mtb infection, as shown by an abrupt decrease in survival of Pycard−/− mice. Decreased survival of Pycard−/− animals was associated with defective granuloma formation. These data demonstrate that PYCARD exerts a novel inflammasome-independent role during chronic Mtb infection by containing the bacteria in granulomas.


Journal of Immunology | 2010

Deletion of ripA Alleviates Suppression of the Inflammasome and MAPK by Francisella tularensis

Max Tze Han Huang; Brittany L. Mortensen; Debra J. Taxman; Robin R. Craven; Sharon Taft-Benz; Todd M. Kijek; James R. Fuller; Beckley K. Davis; Irving C. Allen; Willie June Brickey; Denis Gris; Haitao Wen; Thomas H. Kawula; Jenny P.-Y. Ting

Francisella tularensis is a facultative intracellular pathogen and potential biothreat agent. Evasion of the immune response contributes to the extraordinary virulence of this organism although the mechanism is unclear. Whereas wild-type strains induced low levels of cytokines, an F. tularensis ripA deletion mutant (LVSΔripA) provoked significant release of IL-1β, IL-18, and TNF-α by resting macrophages. IL-1β and IL-18 secretion was dependent on inflammasome components pyrin-caspase recruitment domain/apoptotic speck-containing protein with a caspase recruitment domain and caspase-1, and the TLR/IL-1R signaling molecule MyD88 was required for inflammatory cytokine synthesis. Complementation of LVSΔripA with a plasmid encoding ripA restored immune evasion. Similar findings were observed in a human monocytic line. The presence of ripA nearly eliminated activation of MAPKs including ERK1/2, JNK, and p38, and pharmacologic inhibitors of these three MAPKs reduced cytokine induction by LVSΔripA. Animals infected with LVSΔripA mounted a stronger IL-1β and TNF-α response than that of mice infected with wild-type live vaccine strain. This analysis revealed novel immune evasive mechanisms of F. tularensis.


Journal of Immunology | 2012

Analysis of NLRP3 in the Development of Allergic Airway Disease in Mice

Irving C. Allen; Corey M. Jania; Justin E. Wilson; Erin M. Tekeppe; Xiaoyang Hua; Willie June Brickey; Mildred Kwan; Beverly H. Koller; Stephen L. Tilley; Jenny P.-Y. Ting

The contribution of NLRP3, a member of the nucleotide-binding domain leucine-rich repeat–containing (NLR) family, to the development of allergic airway disease is currently controversial. In this study, we used multiple allergic asthma models to examine the physiologic role of NLRP3. We found no significant differences in airway eosinophilia, histopathologic condition, mucus production, and airway hyperresponsiveness between wild-type and Nlrp3−/− mice in either acute (alum-dependent) or chronic (alum-independent) OVA models. In addition to the OVA model, we did not detect a role for NLRP3 in the development of allergic airway disease induced by either acute or chronic house dust mite Ag exposure. Although we did not observe significant phenotypic differences in any of the models tested, we did note a significant reduction of IL-13 and IL-33 in Nlrp3−/− mice compared with wild-type controls in the chronic OVA model without added alum. In all of the allergic airway disease models, the NLRP3 inflammasome-associated cytokines IL-1β and IL-18 in the lung were below the level of detection. In sum, this report surveyed four different allergic asthma models and found a modest and selected role for NLRP3 in the alum-free OVA model. However, this difference did not greatly alter the clinical outcome of the disease. This finding suggests that the role of NLRP3 in allergic asthma must be re-evaluated.

Collaboration


Dive into the Irving C. Allen's collaboration.

Top Co-Authors

Avatar

Jenny P.-Y. Ting

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Beverly H. Koller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Denis Gris

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janelle C. Arthur

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Debra J. Taxman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Erin McElvania-TeKippe

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John D. Lich

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Justin E. Wilson

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge