Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iryna A. Khasabova is active.

Publication


Featured researches published by Iryna A. Khasabova.


The Journal of Neuroscience | 2004

Differential Effects of CB1 and Opioid Agonists on Two Populations of Adult Rat Dorsal Root Ganglion Neurons

Iryna A. Khasabova; Catherine Harding-Rose; Donald A. Simone; Virginia S. Seybold

Inhibition of primary afferent neurons contributes to the antihyperalgesic effects of opioid and CB1 receptor agonists. Two bioassays were used to compare the effects of the CB1 receptor agonist CP 55,940 and morphine on dissociated adult rat DRG neurons. Both agonists inhibited the increase in free intracellular Ca2+ concentration evoked by depolarization; however, effects of CP 55,940 occurred primarily in large neurons (cell area, >800 μm2), whereas morphine inhibited the response in smaller neurons. Cotreatment with selective blockers of L-, N-, and P/Q-type voltage-dependent Ca2+ channels indicated that CB1 receptors on DRG neurons couple solely with N-type channels but opioid receptors couple with multiple subtypes. Experiments with selective agonists and antagonists of opioid receptors indicated that μ and δ, but not κ, receptors contributed to the inhibitory effect of morphine on voltage-dependent Ca2+ influx. Because Ca2+ channels underlie release of transmitters from neurons, the effects of opioid agonists and CP 55,940 on depolarization-evoked release of calcitonin gene-related peptide (CGRP) were compared. Morphine inhibited release through δ receptors but CP 55,940 had no effect. Colocalization of CGRP with δ-opioid but not μ-opioid or CB1 receptor immunoreactivity in superficial laminae of the dorsal horn of the spinal cord was consistent with the data for agonist inhibition of peptide release. Therefore, CB1 and opioid agonists couple with different voltage-dependent Ca2+ channels in different populations of DRG neurons. Furthermore, differences occur in the distribution of receptors between the cell body and terminals of DRG neurons. The complementary action of CB1 and opioid receptor agonists on populations of DRG neurons provides a rationale for their combined use in modulation of somatosensory input to the spinal cord.


The Journal of Neuroscience | 2008

A Decrease in Anandamide Signaling Contributes to the Maintenance of Cutaneous Mechanical Hyperalgesia in a Model of Bone Cancer Pain

Iryna A. Khasabova; Sergey G. Khasabov; Catherine Harding-Rose; Lia G. Coicou; Bryan A. Seybold; Amy E. Lindberg; Christopher D. Steevens; Donald A. Simone; Virginia S. Seybold

Tumors in bone are associated with pain in humans. Data generated in a murine model of bone cancer pain suggest that a disturbance of local endocannabinoid signaling contributes to the pain. When tumors formed after injection of osteolytic fibrosarcoma cells into the calcaneus bone of mice, cutaneous mechanical hyperalgesia was associated with a decrease in the level of anandamide (AEA) in plantar paw skin ipsilateral to tumors. The decrease in AEA occurred in conjunction with increased degradation of AEA by fatty acid amide hydrolase (FAAH). Intraplantar injection of AEA reduced the hyperalgesia, and intraplantar injection of URB597, an inhibitor of FAAH, increased the local level of AEA and also reduced hyperalgesia. An increase in FAAH mRNA and enzyme activity in dorsal root ganglia (DRG) L3–L5 ipsilateral to the affected paw suggests DRG neurons contribute to the increased FAAH activity in skin in tumor-bearing mice. Importantly, the anti-hyperalgesic effects of AEA and URB597 were blocked by a CB1 receptor antagonist. Increased expression of CB1 receptors by DRG neurons ipsilateral to tumor-bearing limbs may contribute to the anti-hyperalgesic effect of elevated AEA levels. Furthermore, CB1 receptor protein-immunoreactivity as well as inhibitory effects of AEA and URB597 on the depolarization-evoked Ca2+ transient were increased in small DRG neurons cocultured with fibrosarcoma cells indicating that fibrosarcoma cells are sufficient to evoke phenotypic changes in AEA signaling in DRG neurons. Together, the data provide evidence that manipulation of peripheral endocannabinoid signaling is a promising strategy for the management of bone cancer pain.


The Journal of Neuroscience | 2012

Cannabinoid Type-1 Receptor Reduces Pain and Neurotoxicity Produced by Chemotherapy

Iryna A. Khasabova; Sergey G. Khasabov; Justin Paz; Catherine Harding-Rose; Donald A. Simone; Virginia S. Seybold

Painful peripheral neuropathy is a dose-limiting complication of chemotherapy. Cisplatin produces a cumulative toxic effect on peripheral nerves, and 30–40% of cancer patients receiving this agent experience pain. By modeling cisplatin-induced hyperalgesia in mice with daily injections of cisplatin (1 mg/kg, i.p.) for 7 d, we investigated the anti-hyperalgesic effects of anandamide (AEA) and cyclohexylcarbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597), an inhibitor of AEA hydrolysis. Cisplatin-induced mechanical and heat hyperalgesia were accompanied by a decrease in the level of AEA in plantar paw skin. No changes in motor activity were observed after seven injections of cisplatin. Intraplantar injection of AEA (10 μg/10 μl) or URB597 (9 μg/10 μl) transiently attenuated hyperalgesia through activation of peripheral CB1 receptors. Co-injections of URB597 (0.3 mg/kg daily, i.p.) with cisplatin decreased and delayed the development of mechanical and heat hyperalgesia. The effect of URB597 was mediated by CB1 receptors since AM281 (0.33 mg/kg daily, i.p.) blocked the effect of URB597. Co-injection of URB597 also normalized the cisplatin-induced decrease in conduction velocity of Aα/Aβ-fibers and reduced the increase of ATF-3 and TRPV1 immunoreactivity in dorsal root ganglion (DRG) neurons. Since DRGs are a primary site of toxicity by cisplatin, effects of cisplatin were studied on cultured DRG neurons. Incubation of DRG neurons with cisplatin (4 μg/ml) for 24 h decreased the total length of neurites. URB597 (100 nm) attenuated these changes through activation of CB1 receptors. Collectively, these results suggest that pharmacological facilitation of AEA signaling is a promising strategy for attenuating cisplatin-associated sensory neuropathy.


Neuroscience | 2002

Cannabinoids attenuate depolarization-dependent Ca2+ influx in intermediate-size primary afferent neurons of adult rats

Iryna A. Khasabova; Donald A. Simone; Virginia S. Seybold

CB1 receptors have been localized to primary afferent neurons, but little is known about the direct effect of cannabinoids on these neurons. The depolarization-evoked increase in the concentration of free intracellular calcium ([Ca(2+)](i)), measured by microfluorimetry, was used as a bioassay for the effect of cannabinoids on isolated, adult rat primary afferent neurons 20-28 h after dissociation of dorsal root ganglia. Cannabinoid agonists CP 55,940 (100 nM) and WIN 55,212-2 (1 microM) had no effect on the mean K(+)-evoked increase in [Ca(2+)](i) in neurons with a somal area<800 microm(2), but the ligands attenuated the evoked increase in [Ca(2+)](i) by 35% in neurons defined as intermediate in size (800-1500 microm(2)). The effects of CP 55,940 and WIN 55,212-2 were mediated by the CB1 receptor on the basis of relative effective concentrations, blockade by the CB1 receptor antagonist SR141716A and lack of effect of WIN 55,212-3. Intermediate-size neurons rarely responded to capsaicin (100 nM). Although cannabinoid agonists generally did not inhibit depolarization-evoked increases in [Ca(2+)](i) in small neurons, immunocytochemical studies indicated that CB1 receptor-immunoreactivity occurred in this population. CB1 receptor-immunoreactive neurons ranged in size from 227 to 2995 microm(2) (mean somal area of 1044 microm(2)). In double labeling studies, CB1 receptor-immunoreactivity co-localized with labeling for calcitonin gene-related peptide and RT97, a marker for myelination, in some primary afferent neurons. The decrease in evoked Ca(2+) influx indicates that cannabinoids decrease conductance through voltage-dependent calcium channels in a subpopulation of primary afferent neurons. Modulation of calcium channels is one mechanism by which cannabinoids may decrease transmitter release from primary afferent neurons. An effect on voltage-dependent calcium channels, however, represents only one possible effect of cannabinoids on primary afferent neurons. Identifying the mechanisms by which cannabinoids modulate nociceptive neurons will increase our understanding of how cannabinoids produce anti-nociception in normal animals and animals with tissue injury.


The Journal of Neuroscience | 2012

Peroxisome Proliferator-Activated Receptor α Mediates Acute Effects of Palmitoylethanolamide on Sensory Neurons

Iryna A. Khasabova; Yee Xiong; Lia G. Coicou; Daniele Piomelli; Virginia S. Seybold

The amplitude of the depolarization-evoked Ca2+ transient is larger in dorsal root ganglion (DRG) neurons from tumor-bearing mice compared with that of neurons from naive mice, and the change is mimicked by coculturing DRG neurons with the fibrosarcoma cells used to generate the tumors (Khasabova et al., 2007). The effect of palmitoylethanolamide (PEA), a ligand for the peroxisome proliferator-activated receptor α (PPARα), was determined on the evoked-Ca2+ transient in the coculture condition. The level of PEA was reduced in DRG cells from tumor-bearing mice as well as those cocultured with fibrosarcoma cells. Pretreatment with PEA, a synthetic PPARα agonist (GW7647), or ARN077, an inhibitor of the enzyme that hydrolyzes PEA, acutely decreased the amplitude of the evoked Ca2+ transient in small DRG neurons cocultured with fibrosarcoma cells. The PPARα antagonist GW6471 blocked the effect of each. In contrast, the PPARα agonist was without effect in the control condition, but the antagonist increased the amplitude of the Ca2+ transient, suggesting that PPARα receptors are saturated by endogenous ligand under basal conditions. Effects of drugs on mechanical sensitivity in vivo paralleled their effects on DRG neurons in vitro. Local injection of ARN077 decreased mechanical hyperalgesia in tumor-bearing mice, and the effect was blocked by GW6471. These data support the conclusion that the activity of DRG neurons is rapidly modulated by PEA through a PPARα-dependent mechanism. Moreover, agents that increase the activity of PPARα may provide a therapeutic strategy to reduce tumor-evoked pain.


Pharmacological Research | 2011

Increasing 2-arachidonoyl glycerol signaling in the periphery attenuates mechanical hyperalgesia in a model of bone cancer pain

Iryna A. Khasabova; Anisha Chandiramani; Catherine Harding-Rose; Donald A. Simone; Virginia S. Seybold

Metastatic and primary bone cancers are usually accompanied by severe pain that is difficult to manage. In light of the adverse side effects of opioids, manipulation of the endocannabinoid system may provide an effective alternative for the treatment of cancer pain. The present study determined that a local, peripheral increase in the endocannabinoid 2-arachidonoyl glycerol (2-AG) reduced mechanical hyperalgesia evoked by the growth of a fibrosarcoma tumor in and around the calcaneous bone. Intraplantar (ipl) injection of 2-AG attenuated hyperalgesia (ED(50) of 8.2 μg) by activation of peripheral CB2 but not CB1 receptors and had an efficacy comparable to that of morphine. JZL184 (10 μg, ipl), an inhibitor of 2-AG degradation, increased the local level of 2-AG and mimicked the anti-hyperalgesic effect of 2-AG, also through a CB2 receptor-dependent mechanism. These effects were accompanied by an increase in CB2 receptor protein in plantar skin of the tumor-bearing paw as well as an increase in the level of 2-AG. In naïve mice, intraplantar administration of the CB2 receptor antagonist AM630 did not alter responses to mechanical stimuli demonstrating that peripheral CB2 receptor tone does not modulate mechanical sensitivity. These data extend our previous findings with anandamide in the same model and suggest that the peripheral endocannabinoid system is a promising target for the management of cancer pain.


The Journal of Neuroscience | 2007

Chemical Interactions between Fibrosarcoma Cancer Cells and Sensory Neurons Contribute to Cancer Pain

Iryna A. Khasabova; Cheryl L. Stucky; Catherine Harding-Rose; Laura Eikmeier; Alvin J. Beitz; Lia G. Coicou; Amy E. Hanson; Donald A. Simone; Virginia S. Seybold

In an experimental model of cancer pain, the hyperalgesia that occurs with osteolytic tumor growth is associated with the sensitization of nociceptors. We examined functional and molecular changes in small-diameter dorsal root ganglion (DRG) neurons to determine cellular mechanisms underlying this sensitization. The occurrence of a Ca2+ transient in response to either KCl (25 mm) or capsaicin (500 nm) increased in small neurons isolated from murine L3–L6 DRGs ipsilateral to fibrosarcoma cell tumors. The increased responses were associated with increased mRNA levels for the Ca2+ channel subunit α2δ1 and TRPV1 receptor. Pretreatment with gabapentin, an inhibitor of the α2δ1 subunit, blocked the increased response to KCl in vitro and the mechanical hyperalgesia in tumor-bearing mice in vivo. Similar increases in neuronal responsiveness occurred when DRG neurons from naive mice and fibrosarcoma cells were cocultured for 48 h. The CC chemokine ligand 2 (CCL2) may contribute to the tumor cell-induced sensitization because CCL2 immunoreactivity was present in tumors, high levels of CCL2 peptide were present in microperfusates from tumors, and treatment of DRG neurons in vitro with CCL2 increased the amount of mRNA for the α2δ1 subunit. Together, our data provide strong evidence that the chemical mediator CCL2 is released from tumor cells and evokes phenotypic changes in sensory neurons, including increases in voltage-gated Ca2+ channels that likely underlie the mechanical hyperalgesia in the fibrosarcoma cancer model. More broadly, this study provides a novel in vitro model to resolve the cellular and molecular mechanisms by which tumor cells drive functional changes in nociceptors.


Behavioural Pharmacology | 2011

CB1 and CB2 receptor agonists promote analgesia through synergy in a murine model of tumor pain

Iryna A. Khasabova; James M Gielissen; Anisha Chandiramani; Catherine Harding-Rose; Desiree Abu Odeh; Donald A. Simone; Virginia S. Seybold

In light of the adverse side-effects of opioids, cannabinoid receptor agonists may provide an effective alternative for the treatment of cancer pain. This study examined the potency and efficacy of synthetic CB1 and CB2 receptor agonists in a murine model of tumor pain. Intraplantar injection of the CB1 receptor agonist arachidonylcyclopropylamide (ED50 of 18.4 &mgr;g) reduced tumor-related mechanical hyperalgesia by activation of peripheral CB1 but not CB2 receptors. Similar injection of the CB2 receptor agonist AM1241 (ED50 of 19.5 &mgr;g) reduced mechanical hyperalgesia by activation of peripheral CB2 but not CB1 receptors. Both agonists had an efficacy comparable with that of morphine (intraplantar), but their analgesic effects were independent of opioid receptors. Isobolographic analysis of the coinjection of arachidonylcyclopropylamide and AM1241 determined that the CB1 and CB2 receptor agonists interacted synergistically to reduce mechanical hyperalgesia in the tumor-bearing paw. These data extend our previous findings that the peripheral cannabinoid receptors are a promising target for the management of cancer pain and mixed cannabinoid receptor agonists may have a therapeutic advantage over selective agonists.


Neurobiology of Disease | 2013

Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain.

Iryna A. Khasabova; Michelle Holman; Timothy Morse; Natalya Burlakova; Lia G. Coicou; Catherine Harding-Rose; Donald A. Simone; Virginia S. Seybold

Opioids do not effectively manage pain in many patients with advanced cancer. Because anandamide (AEA) activation of cannabinoid type-1 receptors (CB1R) on nociceptors reduces nociception, manipulation of AEA metabolism in the periphery may be an effective alternative or adjuvant therapy in the management of cancer pain. AEA is hydrolyzed by the intracellular enzyme fatty acid amide hydrolase (FAAH), and this enzyme activity contributes to uptake of AEA into neurons and to reduction of AEA available to activate CB1R. We used an in vitro preparation of adult murine dorsal root ganglion (DRG) neurons co-cultured with fibrosarcoma cells to investigate how tumors alter the uptake of AEA into neurons. Evidence that the uptake of [(3)H]AEA into dissociated DRG cells in the co-culture model mimicked the increase in uptake that occurred in DRG cells from tumor-bearing mice supported the utility of the in vitro model to study AEA uptake. Results with the fluorescent AEA analog CAY10455 confirmed that an increase in uptake in the co-culture model occurred in neurons. One factor that contributed to the increase in [(3)H]AEA uptake was an increase in total cellular cholesterol in the cancer condition. Treatment with the FAAH inhibitor URB597 reduced CAY10455 uptake in the co-culture model to the level observed in DRG neurons maintained in the control condition (i.e., in the absence of fibrosarcoma cells), and this effect was paralleled by OMDM-1, an inhibitor of AEA uptake, at a concentration that had no effect on FAAH activity. Maximally effective concentrations of the two drugs together produced a greater reduction than was observed with each drug alone. Treatment with BMS309403, which competes for AEA binding to fatty acid binding protein-5, mimicked the effect of OMDM-1 in vitro. Local injection of OMDM-1 reduced hyperalgesia in vivo in mice with unilateral tumors in and around the calcaneous bone. Intraplantar injection of OMDM-1 (5μg) into the tumor-bearing paw reduced mechanical hyperalgesia through a CB1R-dependent mechanism and also reduced a spontaneous nocifensive behavior. The same dose reduced withdrawal responses evoked by suprathreshold mechanical stimuli in naive mice. These data support the conclusion that OMDM-1 inhibits AEA uptake by a mechanism that is independent of inhibition of FAAH and provide a rationale for the development of peripherally restricted drugs that decrease AEA uptake for the management of cancer pain.


Journal of Neurophysiology | 2015

Inhibition of anandamide hydrolysis attenuates nociceptor sensitization in a murine model of chemotherapy-induced peripheral neuropathy

Megan L. Uhelski; Iryna A. Khasabova; Donald A. Simone

Painful neuropathy frequently develops as a consequence of commonly used chemotherapy agents for cancer treatment and is often a dose-limiting side effect. Currently available analgesic treatments are often ineffective on pain induced by neurotoxicity. Although peripheral administration of cannabinoids, endocannabinoids, and inhibitors of endocannabinoid hydrolysis has been effective in reducing hyperalgesia in models of peripheral neuropathy, including chemotherapy-induced peripheral neuropathy (CIPN), few studies have examined cannabinoid effects on responses of nociceptors in vivo. In this study we determined whether inhibition of fatty acid amide hydrolase (FAAH), which slows the breakdown of the endocannabinoid anandamide (AEA), reduced sensitization of nociceptors produced by chemotherapy. Over the course of a week of daily treatments, mice treated with the platinum-based chemotherapy agent cisplatin developed robust mechanical allodynia that coincided with sensitization of cutaneous C-fiber nociceptors as indicated by the development of spontaneous activity and increased responses to mechanical stimulation. Administration of the FAAH inhibitor URB597 into the receptive field of sensitized C-fiber nociceptors decreased spontaneous activity, increased mechanical response thresholds, and decreased evoked responses to mechanical stimuli. Cotreatment with CB1 (AM281) or CB2 (AM630) receptor antagonists showed that the effect of URB597 was mediated primarily by CB1 receptors. These changes following URB597 were associated with an increase in the endocannabinoid anandamide in the skin. Our results suggest that enhanced signaling in the peripheral endocannabinoid system could be utilized to reduce nociceptor sensitization and pain associated with CIPN.

Collaboration


Dive into the Iryna A. Khasabova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin Paz

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Megan L. Uhelski

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge