Iryna Goncharova
Institute of Chemical Technology in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Iryna Goncharova.
Biophysical Chemistry | 2013
Iryna Goncharova; Sergey Orlov; Marie Urbanová
The locations of three bilirubin (BR)-binding sites with different affinities were identified as subdomains IB, IIA and IIIA for five mammalian serum albumins (SAs): human (HSA), bovine (BSA), rat, (RSA), rabbit (RbSA) and sheep (SSA). The stereoselectivity of a high-affinity BR-binding site was identified in the BR/SA=1/1 system by circular dichroism (CD) spectroscopy, the sites with low affinity to BR were analyzed using difference CD. Site-specific ligand-competition experiments with ibuprofen (marker for subdomain IIIA) and hemin (marker for subdomain IB) did not reveal any changes for the BR/SA=1/1 system and showed a decrease of the bound BR at BR/SA=3/1. Both sites were identified as sites with low affinity to BR. The correlation between stereoselectivity and the arrangement of Arg-Lys residues indicated similarity between the BR-binding sites in subdomain IIIA for all of the SAs studied. Subdomain IB in HSA, BSA, SSA and RbSA has P-stereoselectivity while in RSA it has M-selectivity toward BR. A ligand-competition experiment with gossypol shows a decrease of the CD signal of bound BR for the BR/SA=1/1 system as well as for BR/SA=3/1. Subdomain IIA was assigned as a high-affinity BR-binding site. The P-stereoselectivity of this site in HSA (and RSA, RbSA) was caused by the right-hand localization of charged residues R257/R218-R222, whereas the left-hand orientation of R257/R218-R199 led to the M-stereoselectivity of the primary binding site in BSA (and SSA).
Dalton Transactions | 2013
Marek Kuzma; Jiří Václavík; Petr Novák; Jan Přech; Jaroslav Červený; Jan Pecháček; Petr Šot; Beáta Vilhanová; Václav Matoušek; Iryna Goncharova; Marie Urbanová; Petr Kačer
Asymmetric transfer hydrogenation (ATH) of cyclic imines using [RuCl(η(6)-p-cymene)TsDPEN] (TsDPEN = N-tosyl-1,2-diphenylethylenediamine) was tested with various aliphatic (secondary, tertiary) and aromatic amines employed in the HCOOH-base hydrogen donor mixture. Significant differences in reaction rates and stereoselectivity were observed, which pointed to the fact that the role of the base in the overall mechanism could be more significant than generally accepted. The hydrogenation mixture was studied by nuclear magnetic resonance (NMR), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and vibrational circular dichroism (VCD) with infrared spectroscopy. The results suggested that the protonated base formed an associate with the active ruthenium-hydride species, most probably via a hydrogen bond with the sulfonyl group of the complex. It is assumed that the steric and electronic differences among the bases were responsible for the results of the initial ATH experiments.
Analytical and Bioanalytical Chemistry | 2008
Iryna Goncharova; Marie Urbanová
AbstractStereoselective recognition of bilirubin and biliverdin by poly(l-lysine) (PLL), poly(d-lysine) (PDL), and poly(l-arginine) (PLA) and their micelles with dodecanoate ions (C12) at different pH has been studied using a combination of vibrational and electronic circular dichroism. Biliverdin has been found to be more sensitive to pH in its complexes with the polypeptides. In acidic media in the complexes with PLL–C12 and PDL–C12 the conformation becomes more closed than the characteristic one found at physiological pH. Partial flattening and chiral self-association of bilirubin molecules takes place at higher concentrations with PLL and PDL. For both pigments, inversions of the ECD signals are observed in the systems with PLA at pH ≥ 8.5. This study was carried out in order to clarify the role of Lys and Arg residues in pigment binding to serum albumin. The circular dichroism spectra obtained for bilirubin bound to different mammalian serum albumins have been compared with the homology within the IIA principal ligand-binding structural domains. Analysis suggests that the chiroptical properties of the pigment in the complexes with serum albumins depend on the location of Lys and/or Arg at positions 222 and 199 in the binding site. FigureAnalysis of circular dichroism spectra suggests that the chiroptical properties and the spatial structure of the bile pigments in the complexes with serum albumin depend on the location of Lys and/or Arg at positions 222 and 199 in the binding site of protien
Analytical Biochemistry | 2009
Iryna Goncharova; Marie Urbanová
Complexation of bilirubin (BR) and biliverdin (BV) with biogenic and toxic metals (Mn, Cu, Cd, Co, Fe, Ni, Zn, and Ag) has been studied by means of electronic circular dichroism (ECD) and vibrational circular dichroism (VCD). Poly-L-lysine and beta-cyclodextrin in water were chosen as matrices capable of recognizing the single stereoconformer of the pigments with defined M-helicity. Such systems allow structural changes caused by complexation of pigments with metals in aqueous solution at pH 10-11 to be followed using chiroptical methods, which are intrinsically sensitive to spatial structure. These and other spectroscopic techniques have revealed that BV and BR form monomeric complexes with Cd, Cu, and Zn and dimeric complexes with Mn. The stabilities of the complexes with Fe, Ni, Co, and Ag are remarkably lower. The sign of the ECD and VCD patterns of the complexed BV does not change for the chelates of any of the studied metals other than Zn, this exception being interpreted in terms of manifestation of the opposite helicity of BV in its chelate with Zn. In the case of BR, the observed inversion of ECD signal after complexation, together with the analysis of VCD spectra, reveals that a flattening of the molecule takes place, i.e., an increase in the angle between the pyrrinone chromophores without an inversion of helicity. This chiral stereoselectivity, which is very specific in the case of the Zn chelates, is discussed in connection with the specific inhibition of Zn-required enzymes by bile pigments.
Chirality | 2013
Iryna Goncharova; Sergey Orlov; Marie Urbanová
Although the interactions between bilirubin and serum albumin are among the most studied serum albumin-ligand interactions, the binding-site location and the participation of bilirubin-serum albumin complexes in pathological and physiological processes are under debate. In this article, we have benefited from the chiral structure of bilirubin and used CD spectroscopy to characterize the structure of bilirubin bound to human and bovine serum albumins. We determined that in a phosphate buffer at pH 7.8 there are three binding sites in both human and bovine serum albumins. While the primary binding sites in human and bovine serum albumins bind bilirubin with P- and M-helical conformations, respectively, the secondary binding sites in both albumins bind bilirubin in the P-helical conformation. We have shown that the bonding of bilirubin to the serum albumin matrix is a more favorable process than the self-association of bilirubin under the studied conditions, with a maximum of three bound bilirubins per serum albumin molecule. Although bilirubin bound to the primary binding site has attracted the most attention, the presented results have documented the impact of the secondary binding sites which are relevant in the displacement reactions between BR and drugs and in the phenomena where bilirubin plays antioxidant, antimutagenic, and anti-inflammatory roles.
PLOS ONE | 2016
Jana Jašprová; Matteo Dal Ben; Eleonora Vianello; Iryna Goncharova; Marie Urbanová; Karolina Vyroubalova; Silvia Gazzin; Claudio Tiribelli; Martin Štícha; Marcela Černá; Libor Vitek
Although phototherapy was introduced as early as 1950’s, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014
Sergey Orlov; Iryna Goncharova; Marie Urbanová
Although recent investigations have shown that bilirubin not only has a negative role in the organism but also exhibits significant antimutagenic properties, the mechanisms of interactions between bilirubin and mutagens are not clear. In this study, interaction between bilirubin bound to different binding sites of mammalian serum albumins with structural analogues of the mutagens 2-aminofluorene, 2,7-diaminofluorene and mutagen 2,4,7-trinitrofluorenone were investigated by circular dichroism and absorption spectroscopy. Homological human and bovine serum albumins were used as chiral matrices, which preferentially bind different conformers of bilirubin in the primary binding sites and make it observable by circular dichroism. These molecular systems approximated a real system for the study of mutagens in blood serum. Differences between the interaction of bilirubin bound to primary and to secondary binding sites of serum albumins with mutagens were shown. For bilirubin bound to secondary binding sites with low affinity, partial displacement and the formation of self-associates were observed in all studied mutagens. The associates of bilirubin bound to primary binding sites of serum albumins are formed with 2-aminofluorene and 2,4,7-trinitrofluorenone. It was proposed that 2,7-diaminofluorene does not interact with bilirubin bound to primary sites of human and bovine serum albumins due to the spatial hindrance of the albumins binding domains. The spatial arrangement of the bilirubin bound to serum albumin along with the studied mutagens was modelled using ligand docking, which revealed a possibility of an arrangement of the both bilirubin and 2-aminofluorene and 2,4,7-trinitrofluorenone in the primary binding site of human serum albumin.
Analytical and Bioanalytical Chemistry | 2012
Iryna Goncharova; Jana Novotná; Marie Urbanová
AbstractThe aim of this study was to characterize self-assembled structures of guanosine derivatives in aqueous solutions by vibrational circular dichroism (VCD) and electronic circular dichroism (ECD). Three guanosine derivatives were studied [5′-guanosine monophosphate (GMP), diphosphate (GDP), and triphosphate (GTP)] using a broad range of concentrations and various metal/guanosine ratios. VCD was used for the first time in this field and showed itself to be a powerful method for obtaining specific structural information in solution. It can also help to determine the impact that the cations have, when added to the solution, on the versatile structures of guanine derivatives in terms of their association and disassociation. Based on the markedly different intensities and signs of the VCD signals observed for different concentrations of guanosine derivatives, we propose various structures based on guanine quartets for high guanosine concentrations and high K+/guanosine ratios (i.e., columnar helical organization of the quartets, which are rearranged into a continuous helix). We performed a degenerate coupled oscillator (DCO) calculation to interpret the VCD spectra obtained and how they vary during the assembly of guanosine derivatives. The calculations correctly predicted the VCD spectra and enabled us to identify the structures of the metal cation/guanosine monophosphate aggregates. ECD in the ultraviolet region was used as a diagnostic tool to characterize the studied systems and as a contact point between the previously defined structures of the guanine derivative assemblies and the molecular systems studied here. These studies revealed that the VCD technique is a powerful new method for determining the structures of optically active guanosine motifs. FigureProposed geometries of the guanosine adducts, the corresponding spectra calculated by the degenerate coupled oscillator method, and experimental vibrational circular dichroism spectra
Supramolecular Chemistry | 2008
Ondřej Julínek; Iryna Goncharova; Marie Urbanová
Porphyrin heteroaggregates composed of meso-tetrakis(N-methylpyridinium-4-yl)porphinatocopper(II) and meso-tetrakis(4-sulfonatophenyl)porphyrin formed in the presence of a polyglutamic matrix possess chiral memory and an ability to self-replicate their supramolecular structures. By means of electronic circular dichroism spectroscopy, it has been shown that the self-replication process is not influenced by changes in pH or ionic strength. The average molecular weight of the polyglutamic matrix used for porphyrin aggregate preparation plays a crucial role with regard to the form of the resulting CD spectrum. In the second part of our study, a complex composed of polylysine and bilirubin as a model system for a structured homoaggregate formed on the chiral matrix has been tested for chiral memory phenomena. The results indicate that the bilirubin homoaggregate shows chiral memory.
Supramolecular Chemistry | 2014
Jana Novotná; Iryna Goncharova; Marie Urbanová
Guanine derivatives and biliverdin (BV) are biologically important units. As BV racemises in solution, we utilised various guanine assemblies as suitable sensitive matrices for the enantioselective recognition of BV in circular dichroism (CD) studies. Using electronic CD, we separately detected the interacting P form of BV (visible) and its effect on guanosine (Guo) assemblies (UV). The interaction of the P form was confirmed by vibrational CD even though the signals of Guo and BV overlapped. BV preferred the monomers and vertical stacks ((M)n) of guanosine 5′-monophosphate (GMP) as interacting partners. BV–GMP interaction was also observed in the case of vertically assembled GMP quartets ((G4)n), but this interaction was shown to be destructive for (G4)n. To stabilise (G4)n assemblies more intensively and to protect them against disruption by BV, we applied Guo. BV reorganised the Guo/GMP supramolecular structure although it had demonstrated high stability in our previous study.