Isa Mohamed Rose
National University of Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isa Mohamed Rose.
PLOS ONE | 2014
Nur Zarina Ali Hassan; Norfilza Mohd Mokhtar; Teow Kok Sin; Isa Mohamed Rose; Ismail Sagap; Roslan Harun; Rahman Jamal
Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.
International Journal of Gynecological Cancer | 2010
Fatma S.A. Saghir; Isa Mohamed Rose; Ahmad Zailani Hatta Mohd Dali; Zainab Shamsuddin; A. Rahman A. Jamal; Norfilza Mohd Mokhtar
Introduction: Malignant transformation of type I endometrium involves alteration in gene expression with subsequent uncontrolled proliferation of altered cells. Objective: The main objective of the present study was to identify the cancer-related genes and gene pathways in the endometrium of healthy and cancer patients. Materials and Methods: Thirty endometrial tissues from healthy and type I EC patients were subjected to total RNA isolation. The RNA samples with good integrity number were hybridized to a new version of Affymetrix Human Genome GeneChip 1.0 ST array. We analyzed the results using the GeneSpring 9.0 GX and the Pathway Studio 6.1 software. For validation assay, quantitative real-time polymerase chain reaction was used to analyze 4 selected genes in normal and EC tissue. Results: Of the 28,869 genes profiled, we identified 621 differentially expressed genes (2-fold) in the normal tissue and the tumor. Among these genes, 146 were up-regulated and 476 were down-regulated in the tumor as compared with the normal tissue (P < 0.001). Up-regulated genes included the v-erb-a erythroblastic leukemia viral oncogene homolog 3 (ErbB3), ErbB4, E74-like factor 3 (ELF3), and chemokine ligand 17 (CXCL17). The down-regulated genes included signal transducer and activator transcription 5B (STAT5b), transforming growth factor β receptor III (TGFβ3), caveolin 1 (CAV1), and protein kinase C alpha (PKCA). The gene set enrichment analysis showed 10 significant gene sets with related genes (P < 0.05). The quantitative polymerase chain reaction of 4 selected genes using similar RNA confirmed the microarray results (P < 0.05). Conclusions: Identification of molecular pathways with their genes related to type I EC contribute to the understanding of pathophysiology of this cancer, probably leading to identifying potential biomarkers of the cancer.
Oncology Reports | 2015
Teow Kok-Sin; Norfilza Mohd Mokhtar; Nur Zarina Ali Hassan; Ismail Sagap; Isa Mohamed Rose; Roslan Harun; A. Rahman A. Jamal
Apart from genetic mutations, epigenetic alteration is a common phenomenon that contributes to neoplastic transformation in colorectal cancer. Transcriptional silencing of tumor-suppressor genes without changes in the DNA sequence is explained by the existence of promoter hypermethylation. To test this hypothesis, we integrated the epigenome and transcriptome data from a similar set of colorectal tissue samples. Methylation profiling was performed using the Illumina InfiniumHumanMethylation27 BeadChip on 55 paired cancer and adjacent normal epithelial cells. Fifteen of the 55 paired tissues were used for gene expression profiling using the Affymetrix GeneChip Human Gene 1.0 ST array. Validation was carried out on 150 colorectal tissues using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) technique. PCA and supervised hierarchical clustering in the two microarray datasets showed good separation between cancer and normal samples. Significant genes from the two analyses were obtained based on a ≥2-fold change and a false discovery rate (FDR) P-value of <0.05. We identified 1,081 differentially hypermethylated CpG sites and 36 hypomethylated CpG sites. We also found 709 upregulated and 699 downregulated genes from the gene expression profiling. A comparison of the two datasets revealed 32 overlapping genes with 27 being hypermethylated with downregulated expression and 4 hypermethylated with upregulated expression. One gene was found to be hypomethylated and downregulated. The most enriched molecular pathway identified was cell adhesion molecules that involved 4 overlapped genes, JAM2, NCAM1, ITGA8 and CNTN1. In the present study, we successfully identified a group of genes that showed methylation and gene expression changes in well-defined colorectal cancer tissues with high purity. The integrated analysis gives additional insight regarding the regulation of colorectal cancer-associated genes and their underlying mechanisms that contribute to colorectal carcinogenesis.
Cancer Investigation | 2012
Norfilza Mohd Mokhtar; Nurul Hanis Ramzi; Wong Yin-Ling; Isa Mohamed Rose; Ahmad Zailani Hatta Mohd Dali; Rahman Jamal
This research determined genes contributing to the pathogenesis of endometrioid endometrial cancer (EEC). Eight pairs of microdissected EEC samples matched with normal glandular epithelium were analyzed using microarray. Unsupervised analysis identified 162 transcripts (58 up- and 104 down-regulated) that were differentially expressed (p < .01, fold change ≥ 1.5) between both groups. Quantitative real-time polymerase chain reaction (qPCR) validated the genes of interest: SLC7A5, SATB1, H19, and ZAK (p < .05). Pathway analysis revealed genes involved in acid amino transport, translation, and chromatin remodeling (p < .05). Laser capture microdissection (LCM) followed by microarray enabled precise assessment of homogeneous cell population and identified putative genes for endometrial carcinogenesis.
BioMed Research International | 2014
Min Hwei Ng; Suryasmi Duski; Kok Keong Tan; Mohd Reusmaazran Yusof; Kiat Cheong Low; Isa Mohamed Rose; Zahiah Mohamed; Aminuddin Bin Saim; Ruszymah Bt Hj Idrus
Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.
Hypertension | 2017
Geok Chin Tan; Giulia Negro; Alexandra Pinggera; Nur Maya Sabrina Tizen Laim; Isa Mohamed Rose; Jiri Ceral; Aleš Ryška; Long Kha Chin; Nor Azmi Kamaruddin; Norfilza Mohd Mokhtar; A. Rahman A. Jamal; Norlela Sukor; Miroslav Solar; Joerg Striessnig; Morris J. Brown; Elena Azizan
Mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of KCNJ5 mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata–like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a KCNJ5 mutation (35.7%), 7 adenomas had an ATP1A1 mutation (25%), and 4 adenomas had a CACNA1D mutation (14.3%). One novel mutation in exon 28 of CACNA1D (V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel’s inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used. KCNJ5 mutant adenomas showed a strong expression of CYP17A1, whereas ATP1A1/CACNA1D mutant adenomas had a predominantly negative expression (P value =1.20×10−4). ATP1A1/CACNA1D mutant adenomas had twice the nuclei with intense staining of Ki67 than KCNJ5 mutant adenomas (0.7% [0.5%–1.9%] versus 0.4% [0.3%–0.7%]; P value =0.04). Further, 3 adenomas with either an ATP1A1 mutation or a CACNA1D mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to KCNJ5 mutant APAs, ATP1A1 and CACNA1D mutant adenomas have a seemingly specific histopathologic phenotype.
Pathology & Oncology Research | 2016
Lay Cheng Lim; Mee Lee Looi; Syed Zulkifli Syed Zakaria; Ismail Sagap; Isa Mohamed Rose; Siok Fong Chin; A. Rahman A. Jamal
Early detection of colorectal cancer (CRC) is vital for the improvement of disease prognosis. However to date there are no blood-based biomarkers sensitive and specific enough for early diagnosis. We analysed the differences in serum protein expression of early stage CRC (Dukes’ A and B) and late stage CRC (Dukes’ C and D) against normal controls using 2D Fluorescence Difference Gel Electrophoresis (2D-DIGE). Analysis of the 2D maps showed that 23 proteins were differentially expressed between groups (p ≤ 0.05) and these proteins were identified with LC-MS/MS. Eight proteins were up-regulated and 2 down-regulated in patients with early CRC, whereas 14 proteins were up-regulated and 4 down-regulated in those with late CRC compared to normal controls (p ≤ 0.05). Five proteins, namely apolipoprotein A1 (APOA1), apolipoprotein E (APOE), complement factor H (CFH), galectin-7 (GAL7) and synaptojanin-2 (SYNJ2) were validated using ELISA and only APOA1 and GAL-7 showed consistent findings. Further validation using immunohistochemistry showed negative immunoreactivity for GAL-7 in CRC tissues, suggesting that GAL-7 detected in the serum did not originate from the CRC tumour. APOA1 showed positive immunoreactivity but its expression did not correlate with Dukes’ staging (p = 0.314), tumour grading (p = 0.880) and lymph node involvement (p = 0.108). Differences in APOA1 isoforms and/or conformation between serum and tissue samples as well as tumour heterogeneity may explain for the discrepancies between DIGE and ELISA when compared to immunohistochemistry. Structural and functional studies of APOA1 in future would best describe the role of APOA1 in CRC.
Kaohsiung Journal of Medical Sciences | 2012
Koon Vui-Kee; Ahmad Zailani Hatta Mohd Dali; Isa Mohamed Rose; Razmin Ghazali; Rahman Jamal; Norfilza Mohd Mokhtar
Nonepithelial ovarian cancer (NEOC) is a rare cancer that is often misdiagnosed as other malignant tumors. Research on this cancer using fresh tissues is nearly impossible because of its limited number of samples within a limited time provided. The study is to identify potential genes and their molecular pathways related to NEOC using formalin‐fixed paraffin embedded samples. Total RNA was extracted from eight archived NEOCs and seven normal ovaries. The RNA samples with RNA integrity number >2.0, purity >1.7 and cycle count value <28 cycles were hybridized to the Illumina Whole‐Genome DASL assay (cDNA‐mediated annealing, selection, extension, and ligation). We analyzed the results using the GeneSpring GX11.0 and FlexArray software to determine the differentially expressed genes. Microarray results were validated using an immunohistochemistry method. Statistical analysis identified 804 differentially expressed genes with 443 and 361 genes as overexpressed and underexpressed in cancer, respectively. Consistent findings were documented for the overexpression of eukaryotic translation elongation factor 1 alpha 1, E2F transcription factor 2, and fibroblast growth factor receptor 3, except for the down‐regulated gene, early growth response 1 (EGR1). The immunopositivity staining for EGR1 was found in the majority of cancer tissues. This finding suggested that the mRNA level of a transcript did not always match with the protein expression in tissues. The current gene profile can be the platform for further exploration of the molecular mechanism of NEOC.
Diagnostic Cytopathology | 2012
Nurismah Md. Isa; Jan Jin Bong; Fauzah Abd. Ghani; Isa Mohamed Rose; Salina Husain; Muhammad Azrif
Cutaneous metastasis of hepatocellular carcinoma (HCC) is very rare, accounting for less than 0.8% of all known cutaneous metastases and occurring in 2.7–3.4% of HCCs. With less than 50 such cases reported worldwide, most of which were diagnosed histologically on excised lesions, it can only be expected that diagnosis made on cytological features alone would be challenging. We report a case of cutaneous metastasis of HCC diagnosed based on cytological features and confirmed by Hep Par 1 immunopositivity of the cell block material. An 81‐year‐old man, who was known to have unresectable HCC, presented with a 1‐month history of painless, left nasal alae mass. The mass measured 1.5 cm in diameter, and was multilobulated with a central necrosis. Fine needle aspiration of the mass was done. Smears were cellular, comprising of malignant cells in loose clusters and aggregates as well as singly dispersed. The malignant cells displayed moderate nuclear pleomorphism, occasional prominent nucleoli, and intranuclear pseudoinclusion. Cell block material demonstrated the trabeculae pattern of the malignant cells and Hep Par 1 immunopositivity. The final diagnosis of a metastatic cutaneous HCC was made. In conclusion, cutaneous HCC metastasis is rare and should be considered in the differential diagnosis in patients with a history of HCC presenting with suspicious skin lesion. In the right clinical setting, a confident diagnosis can be made in such cases by using the fine needle aspiration technique aided with immunopositivity for Hep Par 1 antibody of the aspirated material. Diagn. Cytopathol. 2012.
Frontiers in Endocrinology | 2018
Azliana Mohamad Yusof; Rahman Jamal; Rohaizak Muhammad; Shahrun Niza Abdullah Suhaimi; Isa Mohamed Rose; Sazuita Saidin; Nurul Syakima Ab Mutalib
The incidence rate of papillary thyroid carcinoma (PTC) has rapidly increased in the recent decades, and the microRNA (miRNA) is one of the potential biomarkers in this cancer. Despite good prognosis, certain features such as lymph node metastasis (LNM) and BRAF V600E mutation are associated with a poor outcome. More than 50% of PTC patients present with LNM and BRAF V600E is the most common mutation identified in this cancer. The molecular mechanisms underlying these features are yet to be elucidated. This study aims to elucidate miRNA–genes interaction networks in PTC with or without LNM and to determine the association of BRAF V600E mutation with miRNAs and genes expression profiles. Next generation sequencing was performed to characterize miRNA and gene expression profiles in 20 fresh frozen tumor and the normal adjacent tissues of PTC with LNM positive (PTC LNM-P) and PTC without LNM (PTC LNN). BRAF V600E was genotyped using Sanger sequencing. Bioinformatics integration and pathway analysis were performed to determine the regulatory networks involved. Based on network analysis, we then investigated the association between miRNA and gene biomarkers, and pathway enrichment analysis was performed to study the role of candidate biomarkers. We identified 138 and 43 significantly deregulated miRNAs (adjusted p value < 0.05; log2 fold change ≤ −1.0 or ≥1.0) in PTC LNM-P and PTC LNN compared to adjacent normal tissues, respectively. Ninety-six miRNAs had significant expression ratios of 3p-to-5p in PTC LNM-P as compared to PTC LNN. In addition, ribosomal RNA-reduced RNA sequencing analysis revealed 699 significantly deregulated genes in PTC LNM-P versus normal adjacent tissues, 1,362 genes in PTC LNN versus normal adjacent tissue, and 1,576 genes in PTC LNM-P versus PTC LNN. We provide the evidence of miRNA and gene interactions, which are involved in LNM of papillary thyroid cancer. These findings may lead to better understanding of carcinogenesis and metastasis processes. This study also complements the existing knowledge about deregulated miRNAs in papillary thyroid carcinoma development.