Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isaac A. Rodriguez is active.

Publication


Featured researches published by Isaac A. Rodriguez.


Biomaterials | 2009

Multiple factor interactions in biomimetic mineralization of electrospun scaffolds

Parthasarathy Madurantakam; Isaac A. Rodriguez; Christopher P. Cost; Ramakrishnan Viswanathan; David G. Simpson; Matthew J. Beckman; Peter C. Moon; Gary L. Bowlin

One of the major limitations in scaffold-based bone tissue engineering has been the inability to increase the loading of biologically active inorganic mineral. The present study introduces a novel two step strategy to increase overall mineral content of electrospun scaffolds and employs multiple factor interaction as a statistic to identify the combination of factors that yields maximal scaffold mineralization. Different amounts of nHA (0, 10, 25 and 50% by wt. of polymer) were electrospun in combination with polydioxanone (PDO) or poly(glycolide: lactide) to generate composite scaffolds. Successful incorporation of nHA within, on and in between nanofibers was confirmed by transmission and scanning electron microscopy. These scaffolds were immersed in different types (conventional, revised, ionic and modified) of simulated body fluid (SBF), prepared at 1x and 4x concentrations and the incubation was carried out either in static or dynamic setting at biomimetic conditions. At 2 weeks, the total amount of mineral within the scaffold was quantified using a modified Alizarin Red-based assay. Each of the five independent factors was analyzed independently and tested for interaction using random effects ANOVA. Statistics revealed significant higher order interactions among factors and the combination of PDO containing 50% nHA incubated in 1x revised SBF resulted in maximum mineralization.


International Journal of Biomaterials | 2012

A Preliminary Study on the Potential of Manuka Honey and Platelet-Rich Plasma in Wound Healing

Scott A. Sell; Patricia S. Wolfe; Andrew J. Spence; Isaac A. Rodriguez; Jennifer M. McCool; Rebecca L. Petrella; Koyal Garg; Jeffery J. Ericksen; Gary L. Bowlin

Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, and a combination of PRGF and MH. Results. All three cell types demonstrated increases in cellular activity in the presence of PRGF, with further increases in activity seen in the presence of PRGF+MH. hDFs proved to be the most positively responsive cells, as they experienced enhanced proliferation, collagen matrix production, and migration into an in vitro wound healing model with the PRGF+MH-supplemented media. Conclusion. This preliminary in vitro study is the first to evaluate the combination of PRGF and Manuka honey, two products with the potential to increase regeneration individually, as a combined product to enhance dermal regeneration.


BioMed Research International | 2014

Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy

Isaac A. Rodriguez; Emily A. Growney Kalaf; Gary L. Bowlin; Scott A. Sell

Human bone is a tissue with a fairly remarkable inherent capacity for regeneration; however, this regenerative capacity has its limitations, and defects larger than a critical size lack the ability to spontaneously heal. As such, the development and clinical translation of effective bone regeneration modalities are paramount. One regenerative medicine approach that is beginning to gain momentum in the clinical setting is the use of platelet-rich plasma (PRP). PRP therapy is essentially a method for concentrating platelets and their intrinsic growth factors to stimulate and accelerate a healing response. While PRP has shown some efficacy in both in vitro and in vivo scenarios, to date its use and delivery have not been optimized for bone regeneration. Issues remain with the effective delivery of the platelet-derived growth factors to a localized site of injury, the activation and temporal release of the growth factors, and the rate of growth factor clearance. This review will briefly describe the physiological principles behind PRP use and then discuss how engineering its method of delivery may ultimately impact its ability to successfully translate to widespread clinical use.


Cells | 2013

A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration

Isaac A. Rodriguez; Scott A. Sell; Jennifer M. McCool; Gunjan Saxena; Andrew J. Spence; Gary L. Bowlin

The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactive, lyophilized form of platelet-rich plasma), hydroxyapatite, and chitin whiskers. Platelet-rich plasma therapy is an emerging practice that has proven effective in a number of clinical applications, including enhancing bone repair through improved deposition of new bony matrix and angiogenesis. As such, the inclusion of PRGF in our gelatin scaffolds was intended to significantly enhance scaffold bioactivity, while the addition of hydroxyapatite and chitin whiskers were anticipated to increase scaffold strength. Additionally, the gelatin sponges, which readily dissolve in aqueous solutions, were subjected to 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linking, either during or post-gelation, to control their rate of degradation. Scaffolds were evaluated in vitro with respect to compressive strength, mass loss/degradation, protein release, and cellular interaction, with results demonstrating the potential of the gelatin gel sponge scaffold for use in the regeneration of bone.


Colloids and Surfaces B: Biointerfaces | 2014

Fabrication of cell penetration enhanced poly (l-lactic acid-co-ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning.

Anlin Yin; Jiukai Li; Gary L. Bowlin; Dawei Li; Isaac A. Rodriguez; Jing Wang; Tong Wu; Hany EI-Hamshary; Salem S. Al-Deyab; Xiumei Mo

In the vascular prosthetic field, the prevailing thought is that for clinical, long-term success, especially bioresorbable grafts, cellular migration and penetration into the prosthetic structure is required to promote neointima formation and vascular wall development. In this study, we fabricated poly (l-lactic acid-co-ɛ-caprolactone) P(LLA-CL)/silk fibroin (SF) vascular scaffolds through electrospinning using both perforated mandrel subjected to various intraluminal air pressures (0-300kPa), and solid mandrel. The scaffolds were evaluated the cellular infiltration in vitro and mechanical properties. Vascular scaffolds were seeded with smooth muscle cells (SMCs) to evaluate cellular infiltration at 1, 7, and 14 days. The results revealed that air-impedance scaffolds allowed significantly more cell infiltration as compared to the scaffolds fabricated with solid mandrel. Meanwhile, results showed that both mandrel model and applied air pressure determined the interfiber distance and the alignment of fibers in the enhanced porosity regions of the structure which influenced cell infiltration. Uniaxial tensile testing indicated that the air-impedance scaffolds have sufficient ultimate strength, suture retention strength, and burst pressure as well as compliance approximating a native artery. In conclusion, the air-impedance scaffolds improved cellular infiltration without compromising overall biomechanical properties. These results support the scaffolds potential for vascular grafting and in situ regeneration.


Biomaterials Science | 2014

Poly(ester-ether)s: II. Properties of electrospun nanofibres from polydioxanone and poly(methyl dioxanone) blends and human fibroblast cellular proliferation†

Nowsheen Goonoo; Archana Bhaw-Luximon; Isaac A. Rodriguez; Daniel Wesner; Holger Schönherr; Gary L. Bowlin; Dhanjay Jhurry

This article deals with an in-depth study of the thermal, mechanical and degradation behaviours of nanofibres from polydioxanone (PDX) and polydl-3-methyl-1,4-dioxan-2-one (PMeDX) and a comparison with their blend films. Varying ratios of both polymers were blended and electrospun from solution. Electrospun fibres exhibited a melting transition at 109 °C independently of the PMeDX content, which corresponds to the melting of PDX nanofibres. As a result of the drawing process, PMeDX had a reduced plasticizing effect on PDX. In general, it was observed that overall crystallinity of the fibres decreased from 53% to 36% with increasing PMeDX content and this impacted on their mechanical properties. The Youngs moduli decreased as the PMeDX content of the fibres increased. However, an increase in strain at break and peak stress was noted as a result of a decrease in the fibre diameter. AFM images of the electrospun fibres showed an increasing degree of morphological heterogeneity with increasing PMeDX content. Thermal degradation studies showed that electrospun mats were thermally more stable than blend films, as confirmed by a two-fold increase in activation energy. The hydrolytic degradation of the electrospun mats conducted in phosphate buffer solution at 37 °C showed that the degradation followed a surface erosion mechanism as opposed to bulk degradation observed for blend films. Degradation of fibres was found to be mainly dependent on their diameter. On the other hand, the degradation of blend films depended on the overall crystallinity of the blends. Electrospun PDX/PMeDX nanofibrous scaffolds were also subjected to cell viability studies with human dermal fibroblasts, in which they did not show illicit response and demonstrated excellent cell attachment and proliferation.


International Journal of Biomaterials | 2012

Mineralization Potential of Electrospun PDO-Hydroxyapatite-Fibrinogen Blended Scaffolds

Isaac A. Rodriguez; Parthasarathy Madurantakam; Jennifer M. McCool; Scott A. Sell; Hu Yang; Peter C. Moon; Gary L. Bowlin

The current bone autograft procedure for cleft palate repair presents several disadvantages such as limited availability, additional invasive surgery, and donor site morbidity. The present preliminary study evaluates the mineralization potential of electrospun polydioxanone:nano-hydroxyapatite : fibrinogen (PDO : nHA : Fg) blended scaffolds in different simulated body fluids (SBF). Scaffolds were fabricated by blending PDO : nHA : Fg in the following percent by weight ratios: 100 : 0 : 0, 50 : 25 : 25, 50 : 50 : 0, 50 : 0 : 50, 0 : 0 : 100, and 0 : 50 : 50. Samples were immersed in (conventional (c), revised (r), ionic (i), and modified (m)) SBF for 5 and 14 days to induce mineralization. Scaffolds were characterized before and after mineralization via scanning electron microscopy, Alizarin Red-based assay, and modified burnout test. The addition of Fg resulted in scaffolds with smaller fiber diameters. Fg containing scaffolds also induced sheet-like mineralization while individual fiber mineralization was noticed in its absence. Mineralized electrospun Fg scaffolds without PDO were not mechanically stable after 5 days in SBF, but had superior mineralization capabilities which produced a thick bone-like mineral (BLM) layer throughout the scaffolds. 50 : 50 : 0 scaffolds incubated in either r-SBF for 5 days or c-SBF for 14 days produced scaffolds with high mineral content and individual-mineralized fibers. These mineralized scaffolds were still porous and will be further optimized as an effective bone substitute in future studies.


Journal of Materials Chemistry B | 2015

Poly(ester-ether)s: III. assessment of cell behaviour on nanofibrous scaffolds of PCL, PLLA and PDX blended with amorphous PMeDX

Nowsheen Goonoo; Archana Bhaw-Luximon; Isaac A. Rodriguez; Daniel Wesner; Holger Schönherr; Gary L. Bowlin; Dhanjay Jhurry

The aim of this paper is to investigate the physico-chemical properties, degradation behaviour and cellular response of electrospun fibre-scaffolds of semi-crystalline PCL, PLLA and PDX blended with amorphous poly(methyl dioxanone) (PMeDX). Electrospun PCL/PMeDX and PLLA/PMeDX blend mats in varying weight ratios of the two components were fabricated and their overall performance was compared with similar composition PDX/PMeDX scaffolds. DSC analysis showed almost no change in crystallization temperature of PCL with increasing PMeDX content and TGA showed a different degradation profile as PMeDX content increased. The appearance of two crystallization peaks for PLLA/PMeDX blends suggested stereocomplex formation. As noted from AFM images, addition of PMeDX caused a change in the width of the lamellae from 14.8 ± 2.9 nm in 100/0 mat to 32.0 ± 11.5 nm in 85/15 mat. Moreover, PCL/PMeDX blend mats show a significant drop in Youngs modulus for 93/7, 90/10 and 85/15 compositions compared to 100/0 and 98/2. On the other hand, no clear trend in mechanical properties was observed for espun PLLA/PMeDX mats with increasing PMeDX content. Based on these analyses, it was concluded that PCL and PMeDX were immiscible while miscible blends were obtained with PLLA and PMeDX. Initial degradation of electrospun mats over a period of 5 weeks appears to occur via a surface erosion mechanism. In vitro cell culture studies using HDFs showed that the scaffolds were bioactive and a greater density of viable cells was noted on electrospun PCL/PMeDX and PLLA/PMeDX scaffolds compared to PCL and PLLA mats respectively. HDFs infiltrated through the entire thickness of espun 85/15 PLLA/PMeDX scaffold due to a combination of factors including morphology, porosity, surface characteristics and mechanical properties.


Advances in Materials Science and Engineering | 2013

Compression of Multilayered Composite Electrospun Scaffolds: A Novel Strategy to Rapidly Enhance Mechanical Properties and Three Dimensionality of Bone Scaffolds

Parthasarathy Madurantakam; Isaac A. Rodriguez; Koyal Garg; Jennifer M. McCool; Peter C. Moon; Gary L. Bowlin

One major limitation of electrospun scaffolds intended for bone tissue engineering is their inferior mechanical properties. The present study introduces a novel strategy to engineer stiffer scaffolds by stacking multiple layers and cold welding them under high pressure. Electrospun polydioxanone (PDO) and PDO:nanohydroxyapatite (PDO:nHA) scaffolds (1, 2, or 4 layered stacks) were compressed either before or after mineralizing treatment with simulated body fluid (SBF). After two weeks in SBF, scaffolds were analyzed for total mineral content and stiffness by Alizarin red S and uniaxial tensile testing, respectively. Scaffolds were also analyzed for permeability, pore size, and fiber diameter. Results indicated that compression of multiple layers significantly increased the stiffness of scaffolds while reducing mineralization and permeability. This phenomenon was attributed to increased density of fibers and loss of surface area due to fiber welding. Statistics revealed, the 4-layered PDO:nHA scaffold compressed first followed by mineralization in revised SBF had maximal stiffness, low permeability and pore size, and mineralization second only to noncompressed scaffolds. Within the limitations of permeability and pore size, this scaffold configuration represents an optimal midway for desired stiffness and mineral content for bone tissue engineering.


Bioengineering | 2014

Mineralization and Characterization of Composite Lyophilized Gelatin Sponges Intended for Early Bone Regeneration

Isaac A. Rodriguez; Gunjan Saxena; Scott A. Sell; Gary L. Bowlin

The application of freeze-dried gelatin sponges as alternative bone grafting substitutes has many advantages, including the ability to swell, high porosity, tailorable degradation, and versatility to incorporate multiple components such as growth factors and nanofillers. The purpose of this study was to mineralize (M) and further characterize 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linked gelatin sponges enhanced with preparations rich in growth factors, hydroxyapatite, and chitin whiskers (PHCE). Sponges were characterized for their swelling and in vitro mineralization potential, surface characteristics, protein release, mechanical properties, and MG-63 cell attachment and infiltration. All sponges swelled up to 50% of their original volume upon hydration. Scanning electron microscopy showed sparse mineral deposition for gelatin-M scaffolds while PHCE-M scaffolds exhibited more uniform mineral nucleation. Over 21 days, PHCE-M scaffolds cumulatively released significantly more (30%) of its initial protein content than all other scaffolds. PHCE-M scaffolds reported lower modulus values (1.3-1.6 MPa) when compared to gelatin control scaffolds (1.6-3.2 MPa). Increased cell attachment and infiltration was noticed on PHCE and PHCE-M scaffolds. The results of the study demonstrate the enhanced performance of PHCE and PHCE-M scaffolds to serve as bone healing scaffolds. Their potential to release incorporated factors, comparable composition/mechanical properties to tissues developed in the early stages of bone healing, and enhanced initial cellular response make them suitable for further studies evaluating more complex cellular interactions.

Collaboration


Dive into the Isaac A. Rodriguez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer M. McCool

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Parthasarathy Madurantakam

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Patricia S. Wolfe

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koyal Garg

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge