Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isaac Alexander Chaim is active.

Publication


Featured researches published by Isaac Alexander Chaim.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis

Zachary D. Nagel; Carrie Marie Margulies; Isaac Alexander Chaim; Siobhan K. McRee; Patrizia Mazzucato; Anwaar Ahmad; Ryan Abo; Vincent Butty; Anthony L. Forget; Leona D. Samson

Significance DNA, the blueprint of the cell, is constantly damaged by chemicals and radiation. Because DNA damage may cause cell death or mutations that may lead to diseases such as cancer, cells are armed with an arsenal of several distinct mechanisms for repairing the many types of DNA damage that occur. DNA repair capacity (DRC) varies among individuals, and reduced DRC is associated with disease risk; however, the available DRC assays are labor intensive and measure only one pathway at a time. Herein, we present powerful new assays that measure DRC in multiple pathways in a single assay. We use the assays to measure interindividual DRC differences and inhibition of DNA repair, and to uncover unexpected error-prone transcriptional bypass of a thymine dimer. The capacity to repair different types of DNA damage varies among individuals, making them more or less susceptible to the detrimental health consequences of damage exposures. Current methods for measuring DNA repair capacity (DRC) are relatively labor intensive, often indirect, and usually limited to a single repair pathway. Here, we describe a fluorescence-based multiplex flow-cytometric host cell reactivation assay (FM-HCR) that measures the ability of human cells to repair plasmid reporters, each bearing a different type of DNA damage or different doses of the same type of DNA damage. FM-HCR simultaneously measures repair capacity in any four of the following pathways: nucleotide excision repair, mismatch repair, base excision repair, nonhomologous end joining, homologous recombination, and methylguanine methyltransferase. We show that FM-HCR can measure interindividual DRC differences in a panel of 24 cell lines derived from genetically diverse, apparently healthy individuals, and we show that FM-HCR may be used to identify inhibitors or enhancers of DRC. We further develop a next-generation sequencing-based HCR assay (HCR-Seq) that detects rare transcriptional mutagenesis events due to lesion bypass by RNA polymerase, providing an added dimension to DRC measurements. FM-HCR and HCR-Seq provide powerful tools for exploring relationships among global DRC, disease susceptibility, and optimal treatment.


DNA Repair | 2014

Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research.

Zachary D. Nagel; Isaac Alexander Chaim; Leona D. Samson

Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic.


Cancer Research | 2017

DNA repair capacity in multiple pathways predicts chemoresistance in glioblastoma multiforme

Zachary D. Nagel; Gaspar J. Kitange; Shiv K. Gupta; Brian A. Joughin; Isaac Alexander Chaim; Patrizia Mazzucato; Douglas A. Lauffenburger; Jann N. Sarkaria; Leona D. Samson

Cancer cells can resist the effects of DNA-damaging therapeutic agents via utilization of DNA repair pathways, suggesting that DNA repair capacity (DRC) measurements in cancer cells could be used to identify patients most likely to respond to treatment. However, the limitations of available technologies have so far precluded adoption of this approach in the clinic. We recently developed fluorescence-based multiplexed host cell reactivation (FM-HCR) assays to measure DRC in multiple pathways. Here we apply a mathematical model that uses DRC in multiple pathways to predict cellular resistance to killing by DNA-damaging agents. This model, developed using FM-HCR and drug sensitivity measurements in 24 human lymphoblastoid cell lines, was applied to a panel of 12 patient-derived xenograft (PDX) models of glioblastoma to predict glioblastoma response to treatment with the chemotherapeutic DNA-damaging agent temozolomide. This work showed that, in addition to changes in O6-methylguanine DNA methyltransferase (MGMT) activity, small changes in mismatch repair (MMR), nucleotide excision repair (NER), and homologous recombination (HR) capacity contributed to acquired temozolomide resistance in PDX models and led to reduced relative survival prolongation following temozolomide treatment of orthotopic mouse models in vivo Our data indicate that measuring the combined status of MMR, HR, NER, and MGMT provided a more robust prediction of temozolomide resistance than assessments of MGMT activity alone. Cancer Res; 77(1); 198-206. ©2016 AACR.


Journal of Tissue Engineering and Regenerative Medicine | 2012

Evaluation of the potential of novel PCL–PPDX biodegradable scaffolds as support materials for cartilage tissue engineering

Isaac Alexander Chaim; Marcos A. Sabino; Mayela Mendt; Alejandro J. Müller; Diana Ajami

Cartilage is a specialized tissue represented by a group of particular cells (the chondrocytes) and an abundant extracellular matrix. Because of the reduced regenerative capacity of this tissue, cartilage injuries are often difficult to handle. Nowadays tissue engineering has emerged as a very promising discipline, and biodegradable polymeric scaffolds are widely used as tissue supports. In cartilage injuries, the use of autologous chondrocyte implantation from non‐affected cartilage zones has emerged as a very interesting technique, where chondrocytes are expanded in order to obtain a greater number of cells. Nevertheless, it has been reported that chondrocytes in bidimensional cultures suffer a dedifferentiation process. The present study sought, in the first place, to standardize a novel protocol in order to obtain primary cultures of chondrocytes from newborn rabbit hyaline cartilage from the xiphoid process. Second, the potential of porous three‐dimensional (3D) biodegradable polymeric matrices as support materials for chondrocytes was evaluated: a novel poly(ε‐caprolactone)–poly(p‐dioxanone) (PCL–PPDX) blend in a 90:10 w:w ratio and poly(ε‐caprolactone) (PCL). After achieving the standardization, a typical round‐shaped chondrocyte morphology and the expression of collagen type II and aggrecan, evaluated by RT–PCR, were observed. Second‐passage chondrocytes adhered effectively to these scaffolds, although cell growth at 7 days in culture was significantly less in the PCL–PPDX blend. After 3 weeks of culture on PCL–PPDX or PCL, the cells expressed collagen type II. The present study demonstrates the potential, unknown until now, of PCL–PPDX blend scaffolds in the field of cartilage tissue engineering. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2017

In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities

Isaac Alexander Chaim; Zachary D. Nagel; Jennifer J. Jordan; Patrizia Mazzucato; Le P. Ngo; Leona D. Samson

Significance The DNA in each cell is damaged thousands of times daily. Consequently, a battery of DNA repair pathways exist that allow repair of this damage. Failure to repair can lead to devastating diseases, including cancer and neurodegeneration. Each individual’s DNA repair capacity (DRC) is inherently different. Being able to measure an individual’s DRC could contribute to a personalized approach to prevent and treat disease. Here we present powerful tools for measuring in vivo base excision repair capacity for five distinct DNA lesions. We use these methods to predict the cellular responses to a variety of DNA damaging agents, and to monitor differences in DRC in primary human lymphocytes. Additionally, we unveil previously unknown transcriptional mutagenesis induced by DNA lesions. The integrity of our DNA is challenged with at least 100,000 lesions per cell on a daily basis. Failure to repair DNA damage efficiently can lead to cancer, immunodeficiency, and neurodegenerative disease. Base excision repair (BER) recognizes and repairs minimally helix-distorting DNA base lesions induced by both endogenous and exogenous DNA damaging agents. Levels of BER-initiating DNA glycosylases can vary between individuals, suggesting that quantitating and understanding interindividual differences in DNA repair capacity (DRC) may enable us to predict and prevent disease in a personalized manner. However, population studies of BER capacity have been limited because most methods used to measure BER activity are cumbersome, time consuming and, for the most part, only allow for the analysis of one DNA glycosylase at a time. We have developed a fluorescence-based multiplex flow-cytometric host cell reactivation assay wherein the activity of several enzymes [four BER-initiating DNA glycosylases and the downstream processing apurinic/apyrimidinic endonuclease 1 (APE1)] can be tested simultaneously, at single-cell resolution, in vivo. Taking advantage of the transcriptional properties of several DNA lesions, we have engineered specific fluorescent reporter plasmids for quantitative measurements of 8-oxoguanine DNA glycosylase, alkyl-adenine DNA glycosylase, MutY DNA glycosylase, uracil DNA glycosylase, and APE1 activity. We have used these reporters to measure differences in BER capacity across a panel of cell lines collected from healthy individuals, and to generate mathematical models that predict cellular sensitivity to methylmethane sulfonate, H2O2, and 5-FU from DRC. Moreover, we demonstrate the suitability of these reporters to measure differences in DRC in multiple pathways using primary lymphocytes from two individuals.


Nucleic Acids Research | 2017

A novel role for transcription-coupled nucleotide excision repair for the in vivo repair of 3, N[superscript4]-ethenocytosine

Teruaki Iyama; Isaac Alexander Chaim; Alycia M. Gardner; Jie Wu; David M. Wilson; Leona D. Samson

Abstract Etheno (ε) DNA base adducts are highly mutagenic lesions produced endogenously via reactions with lipid peroxidation (LPO) products. Cancer-promoting conditions, such as inflammation, can induce persistent oxidative stress and increased LPO, resulting in the accumulation of ε-adducts in different tissues. Using a recently described fluorescence multiplexed host cell reactivation assay, we show that a plasmid reporter bearing a site-specific 3,N4-ethenocytosine (εC) causes transcriptional blockage. Notably, this blockage is exacerbated in Cockayne Syndrome and xeroderma pigmentosum patient-derived lymphoblastoid and fibroblast cells. Parallel RNA-Seq expression analysis of the plasmid reporter identifies novel transcriptional mutagenesis properties of εC. Our studies reveal that beyond the known pathways, such as base excision repair, the process of transcription-coupled nucleotide excision repair plays a role in the removal of εC from the genome, and thus in the protection of cells and tissues from collateral damage induced by inflammatory responses.


bioRxiv | 2018

Nested oscillatory dynamics in cortical organoids model early human brain network development

Cleber A. Trujillo; Richard Gao; Priscilla D. Negraes; Isaac Alexander Chaim; Alain Domissy; Matthieu Vandenberghe; Anna Devor; Gene W. Yeo; Bradley Voytek; Alysson R. Muotri

Structural and transcriptional changes during early brain maturation follow fixed developmental programs defined by genetics. However, whether this is true for functional network activity remains unknown, primarily due to experimental inaccessibility of the initial stages of the living human brain. Here, we developed cortical organoids that spontaneously display periodic and regular oscillatory network events that are dependent on glutamatergic and GABAergic signaling. These nested oscillations exhibit cross-frequency coupling, proposed to coordinate neuronal computation and communication. As evidence of potential network maturation, oscillatory activity subsequently transitioned to more spatiotemporally irregular patterns, capturing features observed in preterm human electroencephalography (EEG). These results show that the development of structured network activity in the human neocortex may follow stable genetic programming, even in the absence of external or subcortical inputs. Our approach provides novel opportunities for investigating and manipulating the role of network activity in the developing human cortex. HIGHLIGHTS Early development of human functional neural networks and oscillatory activity can be modeled in vitro. Cortical organoids exhibit phase-amplitude coupling between delta oscillation (2 Hz) and high-frequency activity (100-400 Hz) during network-synchronous events. Differential role of glutamate and GABA in initiating and maintaining oscillatory network activity. Developmental impairment of MECP2-KO cortical organoids impacts the emergence of oscillatory activity. Cortical organoid network electrophysiological signatures correlate with human preterm neonatal EEG features. eTOC Brain oscillations are a candidate mechanism for how neural populations are temporally organized to instantiate cognition and behavior. Cortical organoids initially exhibit periodic and highly regular nested oscillatory network events that eventually transition to more spatiotemporally complex activity, capturing features of late-stage preterm infant electroencephalography. Functional neural circuitry in cortical organoids exhibits emergence and development of oscillatory network dynamics similar to those found in the developing human brain.


DNA Repair | 2018

Nitric oxide induced S-nitrosation causes base excision repair imbalance

Marcus Parrish; Isaac Alexander Chaim; Zachary D. Nagel; Steven R. Tannenbaum; Leona D. Samson; Bevin P. Engelward

It is well established that inflammation leads to the creation of potent DNA damaging chemicals, including reactive oxygen and nitrogen species. Nitric oxide can react with glutathione to create S-nitrosoglutathione (GSNO), which can in turn lead to S-nitrosated proteins. Of particular interest is the impact of GSNO on the function of DNA repair enzymes. The base excision repair (BER) pathway can be initiated by the alkyl-adenine DNA glycosylase (AAG), a monofunctional glycosylase that removes methylated bases. After base removal, an abasic site is formed, which then gets cleaved by AP endonuclease and processed by downstream BER enzymes. Interestingly, using the Fluorescence-based Multiplexed Host Cell Reactivation Assay (FM-HCR), we show that GSNO actually enhances AAG activity, which is consistent with the literature. This raised the possibility that there might be imbalanced BER when cells are challenged with a methylating agent. To further explore this possibility, we confirmed that GSNO can cause AP endonuclease to translocate from the nucleus to the cytoplasm, which might further exacerbate imbalanced BER by increasing the levels of AP sites. Analysis of abasic sites indeed shows GSNO induces an increase in the level of AP sites. Furthermore, analysis of DNA damage using the CometChip (a higher throughput version of the comet assay) shows an increase in the levels of BER intermediates. Finally, we found that GSNO exposure is associated with an increase in methylation-induced cytotoxicity. Taken together, these studies support a model wherein GSNO increases BER initiation while processing of AP sites is decreased, leading to a toxic increase in BER intermediates. This model is also supported by additional studies performed in our laboratory showing that inflammation in vivo leads to increased large-scale sequence rearrangements. Taken together, this work provides new evidence that inflammatory chemicals can drive cytotoxicity and mutagenesis via BER imbalance.


PLOS ONE | 2017

Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms

Carrie Marie Margulies; Isaac Alexander Chaim; Aprotim Mazumder; June Criscione; Leona D. Samson

Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER) pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg). Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS) undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose) polymerase 1 (Parp1). Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN) sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.


Cell | 2017

Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9

Ranjan Batra; David A. Nelles; Elaine Pirie; Steven M. Blue; Ryan J. Marina; Harrison Wang; Isaac Alexander Chaim; James D. Thomas; Nigel Zhang; Vu T. Nguyen; Stefan Aigner; Sebastian Markmiller; Guangbin Xia; Kevin D. Corbett; Maurice S. Swanson; Gene W. Yeo

Collaboration


Dive into the Isaac Alexander Chaim's collaboration.

Top Co-Authors

Avatar

Leona D. Samson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zachary D. Nagel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Patrizia Mazzucato

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anwaar Ahmad

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carrie Marie Margulies

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gene W. Yeo

University of California

View shared research outputs
Top Co-Authors

Avatar

Alain Domissy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Devor

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge