Isaac Darko Otchere
University of Ghana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isaac Darko Otchere.
PLOS Neglected Tropical Diseases | 2015
Adwoa Asante-Poku; Dorothy Yeboah-Manu; Isaac Darko Otchere; Samuel Yaw Aboagye; David Stucki; Jan Hattendorf; Sonia Borrell; Julia Feldmann; Emelia Danso; Sebastien Gagneux
Mycobacterium africanum is a member of the Mycobacterium tuberculosis complex (MTBC) and an important cause of human tuberculosis in West Africa that is rarely observed elsewhere. Here we genotyped 613 MTBC clinical isolates from Ghana, and searched for associations between the different phylogenetic lineages of MTBC and patient variables. We found that 17.1% (105/613) of the MTBC isolates belonged to M. africanum, with the remaining belonging to M. tuberculosis sensu stricto. No M. bovis was identified in this sample. M. africanum was significantly more common in tuberculosis patients belonging to the Ewe ethnic group (adjusted odds ratio: 3.02; 95% confidence interval: 1.67–5.47, p<0.001). Stratifying our analysis by the two phylogenetic lineages of M. africanum (i.e. MTBC Lineages 5 and 6) revealed that this association was mainly driven by Lineage 5 (also known as M. africanum West Africa 1). Our findings suggest interactions between the genetic diversity of MTBC and human diversity, and offer a possible explanation for the geographical restriction of M. africanum to parts of West Africa.
Journal of Ethnopharmacology | 2016
Joseph Mwanzia Nguta; Regina Appiah-Opong; Alexander K. Nyarko; Dorothy Yeboah-Manu; Phyllis Addo; Isaac Darko Otchere; Abena Kissi-Twum
Ethnopharmacological relevance Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. Material and methods The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. Results Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3 µg/mL against M. tuberculosis; Strain H37Ra (ATCC® 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient=0.8). Conclusion The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis.
PLOS ONE | 2016
Dorothy Yeboah-Manu; Prince Asare; Adwoa Asante-Poku; Isaac Darko Otchere; Stephen Osei-Wusu; Emelia Danso; Audrey Forson; Kwadwo A. Koram; Sebastien Gagneux
Background There is a perception that genomic differences in the species/lineages of the nine species making the Mycobacterium tuberculosis complex (MTBC) may affect the efficacy of distinct control tools in certain geographical areas. We therefore analyzed the prevalence and spatial distribution of MTBC species and lineages among isolates from pulmonary TB cases over an 8-year period, 2007–2014. Methodology Mycobacterial species isolated by culture from consecutively recruited pulmonary tuberculosis patients presenting at selected district/sub-district health facilities were confirmed as MTBC by IS6110 and rpoß PCR and further assigned lineages and sub lineages by spoligotyping and large sequence polymorphism PCR (RDs 4, 9, 12, 702, 711) assays. Patient characteristics, residency, and risks were obtained with a structured questionnaire. We used SaTScan and ArcMap analyses to identify significantly clustered MTBC lineages within selected districts and spatial display, respectively. Results Among 2,551 isolates, 2,019 (79.1%), 516 (20.2%) and 16 (0.6%) were identified as M. tuberculosis sensu stricto (MTBss), M. africanum (Maf), 15 M. bovis and 1 M. caprae, respectively. The proportions of MTBss and Maf were fairly constant within the study period. Maf spoligotypes were dominated by Spoligotype International Type (SIT) 331 (25.42%), SIT 326 (15.25%) and SIT 181 (14.12%). We found M. bovis to be significantly higher in Northern Ghana (1.9% of 212) than Southern Ghana (0.5% of 2339) (p = 0.020). Using the purely spatial and space-time analysis, seven significant MTBC lineage clusters (p< 0.05) were identified. Notable among the clusters were Ghana and Cameroon sub-lineages found to be associated with north and south, respectively. Conclusion This study demonstrated that overall, 79.1% of TB in Ghana is caused by MTBss and 20% by M. africanum. Unlike some West African Countries, we did not observe a decline of Maf prevalence in Ghana.
Applied and Environmental Microbiology | 2016
Samuel Yaw Aboagye; Emelia Danso; Kobina Assan Ampah; Zuliehatu Nakobu; Prince Asare; Isaac Darko Otchere; Katharina Röltgen; Dzidzo Yirenya-Tawiah; Dorothy Yeboah-Manu
ABSTRACT This study aimed to isolate nontuberculous mycobacterial species from environmental samples obtained from some selected communities in Ghana. To optimize decontamination, spiked environmental samples were used to evaluate four decontamination solutions and supplemented media, after which the best decontamination solution and media were used for the actual analysis. The isolates obtained were identified on the basis of specific genetic sequences, including heat shock protein 65, IS2404, IS2606, rpoB, and the ketoreductase gene, as needed. Among the methods evaluated, decontamination with 1 M NaOH followed by 5% oxalic acid gave the highest rate of recovery of mycobacteria (50.0%) and the lowest rate of contamination (15.6%). The cultivation medium that supported the highest rate of recovery of mycobacteria was polymyxin B-amphotericin B-nalidixic acid-trimethoprim-azlocillin–supplemented medium (34.4%), followed by isoniazid-supplemented medium (28.1%). Among the 139 samples cultivated in the main analysis, 58 (41.7%) yielded mycobacterial growth, 70 (50.4%) had no growth, and 11 (7.9%) had all inoculated tubes contaminated. A total of 25 different mycobacterial species were identified. Fifteen species (60%) were slowly growing (e.g., Mycobacterium ulcerans, Mycobacterium avium, Mycobacterium mantenii, and Mycobacterium malmoense), and 10 (40%) were rapidly growing (e.g., Mycobacterium chelonae, Mycobacterium fortuitum, and Mycobacterium abscessus). The occurrence of mycobacterial species in the various environmental samples analyzed was as follows: soil, 16 species (43.2%); vegetation, 14 species (38.0%); water, 3 species (8.0%); moss, 2 species (5.4%); snail, 1 species (2.7%); fungi, 1 species (2.7%). This study is the first to report on the isolation of M. ulcerans and other medically relevant nontuberculous mycobacteria from different environmental sources in Ghana. IMPORTANCE Diseases caused by mycobacterial species other than those that cause tuberculosis and leprosy are increasing. Control is difficult because the current understanding of how the organisms are spread and where they live in the environment is limited, although this information is needed to design preventive measures. Growing these organisms from the environment is also difficult, because the culture medium becomes overgrown with other bacteria that also live in the environment, such as in soil and water. We aimed to improve the methods for growing these organisms from environmental sources, such as soil and water samples, for better understanding of important mycobacterial ecology.
Canadian Journal of Infectious Diseases & Medical Microbiology | 2016
Samuel A. Sakyi; Samuel Yaw Aboagye; Isaac Darko Otchere; Dorothy Yeboah-Manu
Background. Buruli ulcer (BU) is a necrotizing cutaneous infection caused by Mycobacterium ulcerans. Early diagnosis is crucial to prevent morbid effects and misuse of drugs. We review developments in laboratory diagnosis of BU, discuss limitations of available diagnostic methods, and give a perspective on the potential of using aptamers as point-of-care. Methods. Information for this review was searched through PubMed, web of knowledge, and identified data up to December 2015. References from relevant articles and reports from WHO Annual Meeting of the Global Buruli Ulcer initiative were also used. Finally, 59 articles were used. Results. The main laboratory methods for BU diagnosis are microscopy, culture, PCR, and histopathology. Microscopy and PCR are used routinely for diagnosis. PCR targeting IS2404 is the gold standard for laboratory confirmation. Culture remains the only method that detects viable bacilli, used for diagnosing relapse and accrued isolates for epidemiological investigation as well as monitoring drug resistance. Laboratory confirmation is done at centers distant from endemic communities reducing confirmation to a quality assurance. Conclusions. Current efforts aimed at developing point-of-care diagnostics are saddled with major drawbacks; we, however, postulate that selection of aptamers against MU target can be used as point of care.
International Journal of Tuberculosis and Lung Disease | 2015
Adwoa Asante-Poku; Isaac Darko Otchere; Emelia Danso; David Mensah; Frank Bonsu; Sebastien Gagneux; Dorothy Yeboah-Manu
BACKGROUND Rapid but simple diagnostic tools for the detection of drug-resistant (DR) tuberculosis (TB) have been acknowledged as being important for its effective management and control. OBJECTIVE To establish a molecular line-probe assay (GenoType MTBDRplus) for detecting DR-TB in Ghana. METHOD We first screened 113 Mycobacterium tuberculosis isolates using the indirect proportion method and MTBDRplus. The rpoB and katG genes and the promoter regions of oxyR-ahpC and inhA were sequenced to identify mutations in isolates found to be resistant on phenotypic drug susceptibility testing and/or MTBDRplus. We then analysed an additional 412 isolates using only MTBDRplus. RESULTS Respectively 43 (8.2%) and 8 (1.5%) isolates were resistant to isoniazid (INH) and rifampicin (RMP), while 8 (1.5%) were multidrug-resistant. In resistant isolates, mutations in codon 450 of rpoB and codon 315 of katG, conferring resistance to respectively RMP and INH, dominated. We found two RMP-resistant isolates with a S450L substitution, each harbouring an additional mutation at S388L and Q409R. Using phenotypic testing as gold standard, the MTBDRplus assay showed a sensitivity and specificity in the detection of RMP and INH resistance and multidrug resistance of respectively 100% and 100%, 83.3% and 100%, and 100% and 100%. CONCLUSION The high sensitivity of MTBDRplus makes it a valuable addition to the conventional TB diagnostic algorithm in Ghana.
Tuberculosis | 2016
Isaac Darko Otchere; Adwoa Asante-Poku; Stephen Osei-Wusu; Akosua Baddoo; E. Sarpong; A.H. Ganiyu; Samuel Yaw Aboagye; Audrey Forson; F. Bonsu; A.I. Yahayah; Kwadwo A. Koram; Sebastien Gagneux; Dorothy Yeboah-Manu
Summary We spoligotyped and screened 1490 clinical Mycobacterium tuberculosis complex strains from Northern and Greater Accra regions of Ghana against INH and RIF using the microplate alamar blue phenotypic assay. Specific drug resistance associated genetic elements of drug resistant strains were analyzed for mutations. A total of 111 (7.5%), 10 (0.7%) and 40 (2.6%) were mono-resistant to INH, RIF, and MDR, respectively. We found the Ghana spoligotype to be associated with drug resistance (INH: 22.1%; p = 0.0000, RIF: 6.2%; p = 0.0103, MDR: 4.6%; p = 0.0240) as compared to the Cameroon spoligotype (INH: 6.7%, RIF: 2.4%, MDR: 1.6%). The propensity for an isolate to harbour katG S315T mutation was higher in M. tuberculosis (75.8%) than Mycobacterium africanum (51.7%) (p = 0.0000) whereas the opposite was true for inhApro mutations; MAF (48.3%) compared to MTBSS (26.7%) (p = 0.0419). We identified possible novel compensatory INH resistance mutations in inhA (G204D) and ahpCpro (-88G/A and -142G/A) and a novel ndh mutation K32R. We detected two possible rpoC mutations (G332R and V483G), which occurred independently with rpoB S450L, respectively. The study provides the first evidence that associate the Ghana spoligotype with DR-TB and calls for further genome analyses for proper classification of this spoligotype and to explore for fitness implications and mechanisms underlying this observation.
American Journal of Tropical Medicine and Hygiene | 2017
Prince Asare; Eric Koka; Dzidzo Yirenya-Tawiah; Isaac Darko Otchere; George Ekow Mensah; Dorothy Yeboah-Manu; Samuel Yaw Aboagye
The exact route of transmission of Mycobacterium ulcerans (MU) (causative agent of Buruli ulcer [BU]), risk factors, and reservoir hosts are not clearly known, although it has been identified as an environmental pathogen. This study assessed potential environmental and behavioral risk factors that influence BU infections. We conducted a case-control study where cases were matched by their demographic characteristics and place of residence. A structured questionnaire was administered to solicit information on the environmental and behavioral factors of participants that may expose them to infection. A total of 176 cases and 176 controls were enrolled into the study. Multivariate conditional logistic regression analysis identified farming in swampy areas (odds ratio [OR] = 4.10, 95% confidence interval [CI] = 3.82–7.18), farming while wearing short clothing (OR = 1,734.1, 95% CI = 68.1–44,120.9), insect bite (OR = 988.3, 95% CI = 31.4–31,115.6), and application of leaves on wounds (OR = 6.23, 95% CI = 4.74–18.11) as potential risk factors. Farming in long clothing (OR = 0.000, 95% CI = 0.00–0.14), washing wound with water and soap (OR = 0.37, 95% CI = 0.29–0.98), and application of adhesive bandage on wounds (OR = 0.31, 95% CI = 0.15–0.82) were found to be protective against BU infection. In the absence of the exact MU transmission mechanisms, education of public in BU-endemic zones on the use of protective clothing during farming activities to limit exposure of the skin and proper wound care management would be essential in the fight against BU.
PLOS Neglected Tropical Diseases | 2016
Samuel A. Sakyi; Samuel Yaw Aboagye; Isaac Darko Otchere; Albert M. Liao; Thomas G. Caltagirone; Dorothy Yeboah-Manu
Background Buruli ulcer (BU) is a subcutaneous skin disease listed among the neglected tropical diseases by the World Health Organization (WHO). Early case detection and management is very important to reduce morbidity and the accompanied characteristic disfiguring nature of BU. Since diagnosis based on clinical evidence can lead to misdiagnosis, microbiological confirmation is essential to reduce abuse of drugs; since the anti-mycobacterial drugs are also used for TB treatment. The current WHO gold standard PCR method is expensive, requires infrastructure and expertise are usually not available at the peripheral centers where BU cases are managed. Thus one of the main research agendas is to develop methods that can be applied at the point of care. In this study we selected aptamers, which are emerging novel class of detection molecules, for detecting mycolactone, the first to be conducted in a BUD endemic country. Methods Aptamers that bind to mycolactone were isolated by the SELEX process. To measure their affinity and specificity to mycolactone, the selected aptamers were screened by means of isothermal titration calorimetry (ITC) and an enzyme-linked oligonucleotide assay (ELONA). Selected aptamers were assessed by ELONA using swab samples from forty-one suspected BU patients with IS2404 PCR and culture as standard methods. ROC analysis was used to evaluate their accuracy and cutoff-points. Results Five out of the nine selected aptamers bound significantly (p< 0.05) to mycolactone, of these, three were able to distinguish between mycolactone producing mycobacteria, M. marinum (CC240299, Israel) and other bacteria whilst two others also bounded significantly to Mycobacterium smegmatis. Their dissociation constants were in the micro-molar range. At 95% confidence interval, the ROC curve analysis among the aptamers at OD450 ranged from 0.5–0.7. Using this cut-off for the ELONA assay, the aptamers had 100% specificity and sensitivity between 0.0% and 50.0%. The most promising aptamer, Apt-3683 showed a discernible cleavage difference relative to the non-specific autocatalysis over a 3-minute time course. Conclusion This preliminary proof-of-concept indicates that diagnosis of BUD with RNA aptamers is feasible and can be used as point of care upon incorporation into a diagnostic platform.
International Journal of Infectious Diseases | 2017
Alimuddin Zumla; Isaac Darko Otchere; Gloria Ivy Mensah; Adwoa Asante-Poku; Florian Gehre; Markus Maeurer; Matthew Bates; Peter Mwaba; Francine Ntoumi; Dorothy Yeboah-Manu
Mycobacterium africanum comprises two phylogenetic lineages within the Mycobacterium tuberculosis complex (MTBC). M. africanum was first described and isolated in 1968 from the sputum of a Senegalese patient with pulmonary tuberculosis (TB) and it has been identified increasingly as an important cause of human TB, particularly prevalent in West Africa. The restricted geographical distribution of M. africanum, in contrast to the widespread global distribution of other species of MTBC, requires explanation. Available data indicate that M. africanum may also have important differences in transmission, pathogenesis, and host-pathogen interactions, which could affect the evaluation of new TB intervention tools (diagnostics and vaccines)-those currently in use and those under development. The unequal geographical distribution and spread of MTBC species means that individual research findings from one country or region cannot be generalized across the continent. Thus, generalizing data from previous and ongoing research studies on MTBC may be inaccurate and inappropriate. A major rethink is required regarding the design and structure of future clinical trials of new interventions. The West, Central, East, and Southern African EDCTP Networks of Excellence provide opportunities to take forward these pan-Africa studies. More investments into molecular, epidemiological, clinical, diagnostic, and immunological studies across the African continent are required to enable further understanding of host-M. africanum interactions, leading to the development of more specific diagnostics, biomarkers, host-directed therapies, and vaccines for TB.