Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isaac Edery is active.

Publication


Featured researches published by Isaac Edery.


Nature | 2002

Role for Slimb in the degradation of Drosophila Period protein phosphorylated by Doubletime

Hyuk Wan Ko; Jin Jiang; Isaac Edery

Protein phosphorylation has a key role in modulating the stabilities of circadian clock proteins in a manner specific to the time of day. A conserved feature of animal clocks is that Period (Per) proteins undergo daily rhythms in phosphorylation and levels, events that are crucial for normal clock progression. Casein kinase Iε (CKIε) has a prominent role in regulating the phosphorylation and abundance of Per proteins in animals. This was first shown in Drosophila with the characterization of Doubletime (Dbt), a homologue of vertebrate casein kinase Iε. However, it is not clear how Dbt regulates the levels of Per. Here we show, using a cell culture system, that Dbt promotes the progressive phosphorylation of Per, leading to the rapid degradation of hyperphosphorylated isoforms by the ubiquitin–proteasome pathway. Slimb, an F-box/WD40-repeat protein functioning in the ubiquitin–proteasome pathway interacts preferentially with phosphorylated Per and stimulates its degradation. Overexpression of slimb or expression in clock cells of a dominant-negative version of slimb disrupts normal rhythmic activity in flies. Our findings suggest that hyperphosphorylated Per is targeted to the proteasome by interactions with Slimb.


Science | 1996

Resetting the Drosophila Clock by Photic Regulation of PER and a PER-TIM Complex

Choogon Lee; Vaishali Parikh; Tomoko Itsukaichi; Kiho Bae; Isaac Edery

Circadian clocks can be reset by light stimulation. To investigate the mechanism of this phase shifting, the effects of light pulses on the protein and messenger RNA products of the Drosophila clock gene period (per) were measured. Photic stimuli perturbed the timing of the PER protein and messenger RNA cycles in a manner consistent with the direction and magnitude of the phase shift. In addition, the recently identified clock protein TIM (for timeless) interacted with PER in vivo, and this association was rapidly decreased by light. This disruption of the PER-TIM complex in the cytoplasm was accompanied by a delay in PER phosphorylation and nuclear entry and disruption in the nucleus by an advance in PER phosphorylation and disappearance. These results suggest a mechanism for how a unidirectional environmental signal elicits a bidirectional clock response.


Nature Neuroscience | 2003

A role for CK2 in the Drosophila circadian oscillator

Bikem Akten; Eike Jauch; Ginka K. Genova; Eun Young Kim; Isaac Edery; Thomas Raabe; F. Rob Jackson

The posttranslational modification of clock proteins is critical for the function of circadian oscillators. By genetic analysis of a Drosophila melanogaster circadian clock mutant known as Andante, which has abnormally long circadian periods, we show that casein kinase 2 (CK2) has a role in determining period length. Andante is a mutation of the gene encoding the β subunit of CK2 and is predicted to perturb CK2β subunit dimerization. It is associated with reduced β subunit levels, indicative of a defect in α:β association and production of the tetrameric α2:β2 holoenzyme. Consistent with a direct action on the clock mechanism, we show that CK2β is localized within clock neurons and that the clock proteins Period (Per) and Timeless (Tim) accumulate to abnormally high levels in the Andante mutant. Furthermore, the nuclear translocation of Per and Tim is delayed in Andante, and this defect accounts for the long-period phenotype of the mutant. These results suggest a function for CK2-dependent phosphorylation in the molecular oscillator.


Neuron | 1998

The Drosophila CLOCK Protein Undergoes Daily Rhythms in Abundance, Phosphorylation, and Interactions with the PER–TIM Complex

Choogon Lee; Kiho Bae; Isaac Edery

We report the in vivo characterization of the Drosophila CLOCK protein (dCLOCK), a transcription factor that is required for the expression of the circadian clock genes period (per) and timeless (tim). dCLOCK undergoes circadian fluctuations in abundance, is phosphorylated throughout a daily cycle, and interacts with PER, TIM, and/or the PER-TIM complex during the night but not during most of the day. Our results suggest that PER and TIM participate in transcriptional autoinhibition by physically interacting with dCLOCK or a dCLOCK-containing complex. Nevertheless, in the absence of PER or TIM, the levels of dCLOCK are constitutively low, indicating that PER and TIM also act as positive elements in the feedback loop by stimulating the production of dCLOCK.


Molecular and Cellular Biology | 1999

PER and TIM Inhibit the DNA Binding Activity of a Drosophila CLOCK-CYC/dBMAL1 Heterodimer without Disrupting Formation of the Heterodimer: a Basis for Circadian Transcription

Choogon Lee; Kiho Bae; Isaac Edery

ABSTRACT The Drosophila CLOCK (dCLOCK) and CYCLE (CYC) (also referred to as dBMAL1) proteins are members of the basic helix-loop-helix PAS (PER-ARNT-SIM) superfamily of transcription factors and are required for high-level expression of the circadian clock genes period (per) andtimeless (tim). Several lines of evidence indicate that PER, TIM, or a PER-TIM heterodimer somehow inhibit the transcriptional activity of a putative dCLOCK-CYC complex, generating a negative-feedback loop that is a core element of theDrosophila circadian oscillator. In this report we show that PER and/or TIM inhibits the binding of a dCLOCK-CYC heterodimer to an E-box-containing DNA fragment that is present in the 5′ nontranscribed region of per and acts as a circadian enhancer element. Surprisingly, inhibition of this DNA binding activity by PER, TIM, or both is not accompanied by disruption of the association between dCLOCK and CYC. The results suggest that the interaction of PER, TIM, or both with the dCLOCK-CYC heterodimer induces a conformational change or masks protein regions in the heterodimer, leading to a reduction in DNA binding activity. Together with other findings, our results strongly suggest that daily cycles in the association of PER and TIM with the dCLOCK-CYC complex probably contribute to rhythmic expression of per andtim.


Molecular and Cellular Biology | 1998

Circadian Regulation of a Drosophila Homolog of the Mammalian Clock Gene: PER and TIM Function as Positive Regulators

Kiho Bae; Choogon Lee; David Sidote; Keng-yu Chuang; Isaac Edery

ABSTRACT The Clock gene plays an essential role in the manifestation of circadian rhythms (≅24 h) in mice and is a member of the basic helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) superfamily of transcription factors. Here we report the characterization of a novelDrosophila bHLH-PAS protein that is highly homologous to mammalian CLOCK. (Similar findings were recently described by Allada et al. Cell 93:791–804, 1998, and Darlington et al., Science 280:1599–1603, 1998.) Transcripts from this putative Clockortholog (designated dClock) undergo daily rhythms in abundance that are antiphase to the cycling observed for the RNA products from the Drosophila melanogaster circadian clock genes period (per) and timeless(tim). Furthermore, dClock RNA cycling is abolished and the levels are at trough values in the absence of either PER or TIM, suggesting that these two proteins can function as transcriptional activators, a possibility which is in stark contrast to their previously characterized role in transcriptional autoinhibition. Finally, the temporal regulation of dClock expression is quickly perturbed by shifts in light-dark cycles, indicating that this molecular rhythm is closely connected to the photic entrainment pathway. The isolation of a Drosophila homolog ofClock together with the recent discovery of mammalian homologs of per indicate that there is high structural conservation in the integral components underlying circadian oscillators in Drosophila and mammals. Nevertheless, because mammalian Clock mRNA is constitutively expressed, our findings are a further example of striking differences in the regulation of putative circadian clock orthologs in different species.


Molecular and Cellular Biology | 2004

Splicing of the period Gene 3′-Terminal Intron Is Regulated by Light, Circadian Clock Factors, and Phospholipase C

John Majercak; Wen-Feng Chen; Isaac Edery

ABSTRACT The daily timing of circadian (≅24-h) controlled activity in many animals exhibits seasonal adjustments, responding to changes in photoperiod (day length) and temperature. In Drosophila melanogaster, splicing of an intron in the 3′ untranslated region of the period (per) mRNA is enhanced at cold temperatures, leading to more rapid daily increases in per transcript levels and earlier “evening” activity. Here we show that daily fluctuations in the splicing of this intron (herein referred to as dmpi8) are regulated by the clock in a manner that depends on the photoperiod (day length) and temperature. Shortening the photoperiod enhances dmpi8 splicing and advances its cycle, whereas the amplitude of the clock-regulated daytime decline in splicing increases as temperatures rise. This suggests that at elevated temperatures the clock has a more pronounced role in maintaining low splicing during the day, a mechanism that likely minimizes the deleterious effects of daytime heat on the flies by favoring nocturnal activity during warm days. Light also has acute inhibitory effects, rapidly decreasing the proportion of dmpi8-spliced per transcript, a response that does not require a functional clock. Our results identify a novel nonphotic role for phospholipase C (no-receptor-potential-A [norpA]) in the temperature regulation of dmpi8 splicing.


Neuron | 2002

Drosophila CLOCK Protein Is under Posttranscriptional Control and Influences Light-Induced Activity

Eun Young Kim; Kiho Bae; Fanny S. Ng; Nick R. J. Glossop; Paul E. Hardin; Isaac Edery

In the Drosophila circadian clock, daily cycles in the RNA levels of dclock (dClk) are antiphase to those of period (per). We altered the timing/levels of dClk expression by generating transgenic flies whereby per circadian regulatory sequences were used to drive rhythmic transcription of dClk. The results indicate that posttranscriptional mechanisms make substantial contributions to the temporal changes in the abundance of the dCLK protein. Circadian regulation is largely unaffected in the transgenic per-dClk flies despite higher mean levels of dCLK. However, in per-dClk flies the duration of morning activity is lengthened in light-dark cycles and light pulses evoke longer lasting bouts of activity. Our findings suggest that, in addition to a role in generating circadian rhythms, dCLK modulates the direct effects of light on locomotion.


Molecular and Cellular Biology | 1998

Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM.

David Sidote; John Majercak; Vaishali Parikh; Isaac Edery

ABSTRACT Circadian (≅24-h) rhythms are governed by endogenous biochemical oscillators (clocks) that in a wide variety of organisms can be phase shifted (i.e., delayed or advanced) by brief exposure to light and changes in temperature. However, how changes in temperature reset circadian timekeeping mechanisms is not known. To begin to address this issue, we measured the effects of short-duration heat pulses on the protein and mRNA products from the Drosophila circadian clock genes period (per) andtimeless (tim). Heat pulses at all times in a daily cycle elicited dramatic and rapid decreases in the levels of PER and TIM proteins. PER is sensitive to heat but not light, indicating that individual clock components can markedly differ in sensitivity to environmental stimuli. A similar resetting mechanism involving delays in the per-tim transcriptional-translational feedback loop likely underlies the observation that when heat and light signals are administered in the early night, they both evoke phase delays in behavioral rhythms. However, whereas previous studies showed that the light-induced degradation of TIM in the late night is accompanied by stable phase advances in the temporal regulation of the PER and TIM biochemical rhythms, the heat-induced degradation of PER and TIM at these times in a daily cycle results in little, if any, long-term perturbation in the cycles of these clock proteins. Rather, the initial heat-induced degradation of PER and TIM in the late night is followed by a transient and rapid increase in the speed of the PER-TIM temporal program. The net effect of these heat-induced changes results in an oscillatory mechanism with a steady-state phase similar to that of the unperturbed control situation. These findings can account for the lack of apparent steady-state shifts in Drosophila behavioral rhythms by heat pulses applied in the late night and strongly suggest that stimulus-induced changes in the speed of circadian clocks can contribute to phase-shifting responses.


BMC Genomics | 2008

Circadian regulation of a limited set of conserved microRNAs in Drosophila

Maocheng Yang; Jung Eun Lee; Richard W. Padgett; Isaac Edery

BackgroundMicroRNAs (miRNAs) are short non-coding RNA molecules that target mRNAs to control gene expression by attenuating the translational efficiency and stability of transcripts. They are found in a wide variety of organisms, from plants to insects and humans. Here, we use Drosophila to investigate the possibility that circadian clocks regulate the expression of miRNAs.ResultsWe used a microarray platform to survey the daily levels of D. melanogaster miRNAs in adult heads of wildtype flies and the arrhythmic clock mutant cyc01. We find two miRNAs (dme-miR-263a and -263b) that exhibit robust daily changes in abundance in wildtype flies that are abolished in the cyc01 mutant. dme-miR-263a and -263b reach trough levels during the daytime, peak during the night and their levels are constitutively elevated in cyc01 flies. A similar pattern of cycling is also observed in complete darkness, further supporting circadian regulation. In addition, we identified several miRNAs that appear to be constitutively expressed but nevertheless differ in overall daily levels between control and cyc01 flies.ConclusionThe circadian clock regulates miRNA expression in Drosophila, although this appears to be highly restricted to a small number of miRNAs. A common mechanism likely underlies daily changes in the levels of dme-miR-263a and -263b. Our results suggest that cycling miRNAs contribute to daily changes in mRNA and/or protein levels in Drosophila. Intriguingly, the mature forms of dme-miR-263a and -263b are very similar in sequence to several miRNAs recently shown to be under circadian regulation in the mouse retina, suggesting conserved functions.

Collaboration


Dive into the Isaac Edery's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna C. Chiu

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Choogon Lee

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Evrim Yildirim

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

John Majercak

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

David Sidote

Center for Advanced Biotechnology and Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge