Isaac M. Adjei
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isaac M. Adjei.
Advances in Experimental Medicine and Biology | 2014
Isaac M. Adjei; Blanka Sharma; Vinod Labhasetwar
Understanding the interactions of nanoparticles (NPs) with cells and how these interactions influence their cellular uptake is essential to exploring the biomedical applications of NPs, particularly for drug delivery. Various factors, whether differences in physical properties of NPs or variations in cell-membrane characteristics, influence NP-cell interactions and uptake processes. NP-cell membrane interactions may also influence intracellular trafficking of NPs, their sorting into different intracellular compartments, cellular retention, and hence the efficacy of encapsulated therapeutics. A crucial consideration is whether such interactions might cause any toxicity, starting with how NPs interact in transit with the biological environment prior to their interactions with targeted cells and tissues. Understanding the effects of various NP characteristics on cellular and biological processes could help in designing NPs that are efficient but also nontoxic.
Scientific Reports | 2013
Hayder Jaffer; Isaac M. Adjei; Vinod Labhasetwar
Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.
Drug Delivery and Translational Research | 2011
Blanka Sharma; Wenxue Ma; Isaac M. Adjei; Jayanth Panyam; Sanja Dimitrijevic; Vinod Labhasetwar
The p53 tumor suppressor gene is mutated in 50% of human cancers, resulting in more aggressive disease with greater resistance to chemotherapy and radiation therapy. Advances in gene therapy technologies offer a promising approach to restoring p53 function. We have developed polymeric nanoparticles (NPs), based on poly(lactic-co-glycolic acid), that provide sustained intracellular delivery of plasmid DNA, resulting in sustained gene expression without vector-associated toxicity. Our previous studies with p53 gene-loaded NPs (p53NPs) demonstrated sustained antiproliferative effects in cancer cells in vitro. The objective of this study was to evaluate the efficacy of p53NPs in vivo. Tumor xenografts in mice were established with human p53-null prostate cancer cells. Animals were treated with p53NPs by either local (intratumoral injection) or systemic (intravenous) administration. Controls included saline, p53 DNA alone, and control NPs. Mice treated with local injections of p53NPs demonstrated significant tumor inhibition and improved animal survival compared with controls. Tumor inhibition corresponded to sustained and greater p53 gene and protein expression in tumors treated with p53NPs than with p53 DNA alone. A single intravenous dose of p53NPs was successful in reducing tumor growth and improving animal survival, although not to the same extent as with local injections. Imaging studies showed that NPs accumulate in tumor tissue after intravenous injection; however, further improvement in tumor targeting efficiency of p53NPs may be needed for better outcome. In conclusion, the NP-mediated p53 gene therapy is effective in tumor growth inhibition. NPs may be developed as nonviral vectors for cancer and other genetic diseases.
Nanomedicine: Nanotechnology, Biology and Medicine | 2014
Isaac M. Adjei; Chiranjeevi Peetla; Vinod Labhasetwar
AIM A large fraction of the administered dose of nanoparticles (NPs) localizes into nontarget tissue, which could be due to the heterogeneous population of NPs. MATERIALS & METHODS To investigate the impact of the above issue, we simultaneously tracked the biodistribution using optical imaging of two different sized poly(d,l-lactide co-glycolide) NPs, which also varied in their surface charge and texture, in a prostate tumor xenograft mouse model. RESULTS Although formulated using the same polymer and emulsifier concentration, small NPs were neutral (S-neutral-NPs), whereas large NPs were anionic (L-anionic-NPs). Simultaneous injection of these NPs, representing heterogeneity, shows significantly different biodistribution. S-neutral-NPs demonstrated longer circulation time than L-anionic-NPs (t1/2 = 96 vs 13 min); accounted for 75% of total NPs accumulated in the tumor; and showed 13-fold greater tumor to liver signal intensity ratio than L-anionic-NPs. CONCLUSION The data underscore the importance of formulating nanocarriers of specific properties to enhance their targeting efficacy.
Journal of Controlled Release | 2016
Isaac M. Adjei; Blanka Sharma; Chiranjeevi Peetla; Vinod Labhasetwar
Advanced-stage prostate cancer usually metastasizes to bone and is untreatable due to poor biodistribution of intravenously administered anticancer drugs to bone. In this study, we modulated the surface charge/composition of biodegradable nanoparticles (NPs) to sustain their blood circulation time and made them small enough to extravasate through the openings of the bones sinusoidal capillaries and thus localize into marrow. NPs with a neutral surface charge, achieved by modulating the NP surface-associated emulsifier composition, were more effective at localizing to bone marrow than NPs with a cationic or anionic surface charge. These small neutral NPs (~150nm vs. the more usual ~320nm) were also ~7-fold more effective in localizing in bone marrow than large NPs. We hypothesized that NPs that effectively localize to marrow could improve NP-mediated anticancer drug delivery to sites of bone metastasis, thereby inhibiting cancer progression and preventing bone loss. In a PC-3M-luc cell-induced osteolytic intraosseous model of prostate cancer, these small neutral NPs demonstrated greater accumulation in bone within metastatic sites than in normal contralateral bone as well as co-localization with the tumor mass in marrow. Significantly, a single-dose intravenous administration of these small neutral NPs loaded with paclitaxel (PTX-NPs), but not anionic PTX-NPs, slowed the progression of bone metastasis. In addition, neutral PTX-NPs prevented bone loss, whereas animals treated with the rapid-release drug formulation Cremophor EL (PTX-CrEL) or saline (control) showed >50% bone loss. Neutral PTX-NPs did not cause acute toxicity, whereas animals treated with PTX-CrEL experienced weight loss. These results indicate that NPs with appropriate physical and sustained drug-release characteristics could be explored to treat bone metastasis, a significant clinical issue in prostate and other cancers.
Expert Opinion on Drug Delivery | 2015
Samantha A Cramer; Isaac M. Adjei; Vinod Labhasetwar
Introduction: Advancements in epigenetic treatments are not only coming from new drugs, but also from modifications or encapsulation of the existing drugs into different formulations leading to greater stability and enhanced delivery to the target site. The epigenome is highly regulated and complex; therefore, it is important that off-target effects of epigenetic drugs be minimized. The step from in vitro to in vivo treatment of these drugs often requires development of a method of effective delivery for clinical translation. Areas covered: This review covers epigenetic mechanisms such as DNA methylation, chromatin remodeling and small-RNA-mediated gene regulation. There is a section in the review with examples of diseases where epigenetic alterations lead to impaired pathways, with an emphasis on cancer. Epigenetic drugs, their targets and clinical status are presented. Advantages of using a delivery method for epigenetic drugs as well as examples of current advancements and challenges are also discussed. Expert opinion: Epigenetic drugs have the potential to be very effective therapy against a number of diseases, especially cancers and neurological disorders. As with many chemotherapeutics, undesired side effects need to be minimized. Finding a suitable delivery method means reducing side effects and achieving a higher therapeutic index. Each drug may require a unique delivery method exploiting the drug’s chemistry or other physical characteristic requiring interdisciplinary participation and would benefit from a better understanding of the mechanisms of action.
Pharmaceutics | 2018
Isaac M. Adjei; Madison Temples; Shannon Brown; Blanka Sharma
Bone metastases are common complications of solid tumors, particularly those of the prostate, breast, and lungs. Bone metastases can lead to painful and devastating skeletal-related events (SREs), such as pathological fractures and nerve compressions. Despite advances in treatment for cancers in general, options for bone metastases remain inadequate and generally palliative. Anticancer drugs (chemotherapy and radiopharmaceuticals) do not achieve therapeutic concentrations in the bone and are associated with dose-limiting side effects to healthy tissues. Nanomedicines, with their tunable characteristics, have the potential to improve drug targeting to bone metastases while decreasing side effects for their effective treatment. In this review, we present the current state of the art for nanomedicines to treat bone metastases. We also discuss new treatment modalities enhanced by nanomedicine and their effects on SREs and disease progression.
Cancer Letters | 2013
Blanka Sharma; Chiranjeevi Peetla; Isaac M. Adjei; Vinod Labhasetwar
Archive | 2016
Isaac M. Adjei; Glendon Plumton; Blanka Sharma
Cosmetics | 2015
Melinda Stees; Isaac M. Adjei; Vinod Labhasetwar