Isabel A. Muzzio
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isabel A. Muzzio.
Neuron | 2003
Alexei Morozov; Isabel A. Muzzio; Rusiko Bourtchouladze; Niels Van-Strien; Kyle Lapidus; Deqi Yin; Danny G. Winder; J. Paige Adams; J. David Sweatt; Eric R. Kandel
Learning-induced synaptic plasticity commonly involves the interaction between cAMP and p42/44MAPK. To investigate the role of Rap1 as a potential signaling molecule coupling cAMP and p42/44MAPK, we expressed an interfering Rap1 mutant (iRap1) in the mouse forebrain. This expression selectively decreased basal phosphorylation of a membrane-associated pool of p42/44MAPK, impaired cAMP-dependent LTP in the hippocampal Schaffer collateral pathway induced by either forskolin or theta frequency stimulation, decreased complex spike firing, and reduced the p42/44MAPK-mediated phosphorylation of the A-type potassium channel Kv4.2. These changes correlated with impaired spatial memory and context discrimination. These results indicate that Rap1 couples cAMP signaling to a selective membrane-associated pool of p42/44MAPK to control excitability of pyramidal cells, the early and late phases of LTP, and the storage of spatial memory.
Neuron | 2003
Amy Chen; Isabel A. Muzzio; Gaël Malleret; Dusan Bartsch; Miguel Verbitsky; Paul Pavlidis; Amanda L. Yonan; Svetlana Vronskaya; Michael Grody; Ivan L. Cepeda; T. Conrad Gilliam; Eric R. Kandel
To examine the role of C/EBP-related transcription factors in long-term synaptic plasticity and memory storage, we have used the tetracycline-regulated system and expressed in the forebrain of mice a broad dominant-negative inhibitor of C/EBP (EGFP-AZIP), which preferentially interacts with several inhibiting isoforms of C/EBP. EGFP-AZIP also reduces the expression of ATF4, a distant member of the C/EBP family of transcription factors that is homologous to the Aplysia memory suppressor gene ApCREB-2. Consistent with the removal of inhibitory constraints on transcription, we find an increase in the pattern of gene transcripts in the hippocampus of EGFP-AZIP transgenic mice and both a reversibly enhanced hippocampal-based spatial memory and LTP. These results suggest that several proteins within the C/EBP family including ATF4 (CREB-2) act to constrain long-term synaptic changes and memory formation. Relief of this inhibition lowers the threshold for hippocampal-dependent long-term synaptic potentiation and memory storage in mice.
PLOS Biology | 2010
Isabel A. Muzzio; Liat Levita; Jayant E. Kulkarni; Joseph Monaco; Clifford G. Kentros; Matthew Stead; L. F. Abbott; Eric R. Kandel
Attention enhances the encoding and retrieval of olfactory and visuospatial representations by modulating place field stability, firing rate, and neuronal synchronization of pyramidal cells in the hippocampus.
The Journal of Physiology | 2009
Isabel A. Muzzio; Clifford G. Kentros; Eric R. Kandel
The hippocampus is critically involved in storing explicit memory such as memory for space. A defining feature of explicit memory storage is that it requires attention both for encoding and retrieval. Whereas, a great deal is now known about the mechanisms of storage, the mechanisms whereby attention modulates the encoding and retrieval of space and other hippocampus‐dependent memory representations are not known. In this review we discuss recent studies, including our own, which show on the cellular level that attention is critical for the stabilization of spatial and reward‐associated odour representations. Our findings support the view that in the hippocampus attention selects the reference frame for task‐relevant information. This mechanism is in part mediated by dopamine acting through D1/D5 receptors and involves an increase in neuronal synchronization in the gamma band frequency. We propose that synchronous activity leads to enhancements in synaptic strength that mediate the stabilization of hippocampal representations.
Reviews in The Neurosciences | 1998
Andrew Talk; Isabel A. Muzzio; Ronald F. Rogers
Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction.
Behavioral Neuroscience | 1997
Isabel A. Muzzio; Andrew Talk
An incremental increase in the excitability (i.e., input resistance, evoked spike frequency) of B photoreceptors in Hermissenda accompanied successive pairings of light and presynaptic stimulation of vestibular hair cells (simulating light-rotation pairings in an intact animal). Analysis of protein kinase C (PKC) in the Hermissendas photoreceptors indicated a training-induced incremental reduction of PKC in cytosolic compartments, a tendency toward an increase in membrane compartments, and a small decrease in total enzyme activity (possibly owing to a downregulation or conversion of PKC to a calcium-independent state). Neither the biophysical or biochemical effects were observed in Hermissenda exposed to unpaired light and rotation or in those trained in the presence of the selective PKC inhibitor NPC-15437 (which had no effect on synaptic interactions or light-induced generator potentials). These results suggest that the intracellular redistribution of a protein kinase contributes critically to the kinetics of new learning.
Behavioral Neuroscience | 1999
Isabel A. Muzzio; Rey R. Ramirez; Andrew Talk
Using Hermissenda as subjects, massed-trials training deficits were examined. Associative pairings of light and rotation induced a progressively greater conditioned foot contraction in response to light as the intertrial interval (ITI) was extended (up to 8 min). In contrast, a short ITI (30 s) produced no evidence of learning. In a corresponding in vitro conditioning experiment that mimicked training of the intact animal, facilitation of neuronal excitability in the animals B photoreceptors paralleled the results obtained in vivo. Imaging of intracellular Ca2+ using Fura-2 indicated that Ca2+ levels remained elevated during short ITIs. This Ca2+ accumulation appears to induce activation of protein phosphatases because normal facilitation of the B photoreceptors was induced with a short ITI if training occurred in the presence of a phosphatase inhibitor. These results suggest that intracellular Ca2+ and protein phosphatases contribute interactively to the kinetics of memory formation and provide evidence that an accumulation of intracellular Ca2+ across training trials may impede memory formation.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Joshua B. Julian; Alexander T. Keinath; Isabel A. Muzzio; Russell A. Epstein
Significance The ability to recover one’s bearings when lost is critical for successful navigation. To accomplish this feat, a navigator must identify its current location (place recognition), and it must also recover its facing direction (heading retrieval). Using a novel behavioral paradigm, we demonstrate that mice use one set of cues to determine their location and then ignore these same cues when determining their heading, although the cues are informative in both cases. These results suggest that place recognition and heading retrieval are mediated by different processing systems that operate in partial independence of each other. This finding has important implications for understanding the cognitive architecture underlying spatial navigation. A lost navigator must identify its current location and recover its facing direction to restore its bearings. We tested the idea that these two tasks—place recognition and heading retrieval—might be mediated by distinct cognitive systems in mice. Previous work has shown that numerous species, including young children and rodents, use the geometric shape of local space to regain their sense of direction after disorientation, often ignoring nongeometric cues even when they are informative. Notably, these experiments have almost always been performed in single-chamber environments in which there is no ambiguity about place identity. We examined the navigational behavior of mice in a two-chamber paradigm in which animals had to both recognize the chamber in which they were located (place recognition) and recover their facing direction within that chamber (heading retrieval). In two experiments, we found that mice used nongeometric features for place recognition, but simultaneously failed to use these same features for heading retrieval, instead relying exclusively on spatial geometry. These results suggest the existence of separate systems for place recognition and heading retrieval in mice that are differentially sensitive to geometric and nongeometric cues. We speculate that a similar cognitive architecture may underlie human navigational behavior.
Brain Research | 1997
Andrew Talk; Isabel A. Muzzio
During contiguous pairings of light and rotation, B photoreceptors in the Hermissenda eye undergo an increase in excitability that contributes to a modification of several light-elicited behaviors. This excitability increase requires a light-induced rise in intracellular Ca2+ in the photoreceptor concomitant with transmitter binding to G protein-coupled receptors as a result of presynaptic vestibular hair cell stimulation. Phospholipases and arachidonic acid (ArA) are here reported to be involved in independent signal transduction pathways that underlie both receptor function and activity-dependent facilitation of the B photoreceptor. 4-Bromophenacyl bromide (BPB), an inhibitor of phospholipases A2 (PLA2) and C (PLC), blocked the generation of light-induced depolarizing generator potentials, but had no affect on the inhibitory postsynaptic potential (IPSP) in the B cell that results from hair cell stimulation. Quinacrine, which predominantly blocks the activity of PLA2 in neurons, had no affect on either the light response or the IPSP, but did block increases in excitability (i.e. increased input resistance and elicited spike rate) of the B cell that results from pairings of light and presynaptic vestibular stimulation (i.e., in vitro associative conditioning). Neither nordihydroquararetic acid (NDGA), which inhibits metabolism of ArA by cyclooxygenase, nor indomethacin, which inhibits lipoxygenase metabolism of ArA, affected the light response or IPSP, but both blocked the increases in excitability in the B cell that accompanied in vitro conditioning. In combination with earlier results, these data suggest that ArA activates PKC in a synergistic fashion with Ca2+ and diacylglycerol in the B cell, and suggest that PLA2-induced ArA release, though not necessary for transduction of light or the hair cell-induced IPSP in the B cell, is a critical component of the convergence of signals that precipitates associative facilitation in this system.
Behavioral Neuroscience | 1996
Isabel A. Muzzio; Andrew Talk
With the invertebrate Hermissenda as subjects, variability in acquisition of a learned association between light and rotation was correlated with the magnitude of the unconditioned responses elicited by these stimuli. Moreover, learning was facilitated by increasing stimulus intensity. In the isolated nervous system, pairings of light and mechanical stimulation of the animals vestibular hair cells resulted in an increase in the excitability of B photoreceptors (an in vitro index of learning) that was strongly correlated with the strength of the synaptic interaction between the hair cells and the photoreceptors and weakly correlated with the magnitude of the light response in the photoreceptors. Because these in vitro results are not attributable to motor or motivational variables, they suggest that the efficacy of synaptic integration between sensory systems and sensory transduction is the primary determinant of the variability in learning.