Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Caçador is active.

Publication


Featured researches published by Isabel Caçador.


Marine Environmental Research | 2000

Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes

Isabel Caçador; Carlos Vale; Fernando Catarino

Concentrations of Zn, Pb, Cu and Cd have been determined in leaves, stems and roots of Spartina maritima and Halimione portulacoides from the Tagus estuary salt mash (Corroios) and in the sediments between their roots. Biological materials and sediments were sampled every 2 months, between July 1991 and July 1992. Root biomass increased from July to September and from January to March. The greatest metal concentrations occurred in the roots, with lowest levels in January and increasing levels during the growth periods. Zn, Pb and Cu in sediments exhibited a corresponding change in concentrations, reaching maximum in January and subsequently decreasing in spring. The ratios between metal concentrations in the root and in sediments were higher for H. portulacoides when compared to S. maritima, whose roots are surrounded by a more acidic and reduced sediment environment. It was concluded, therefore, that H. portulacoides is a more effective accumulator of metals than S. maritima, and both root-sediment systems exhibited a seasonal variation of metal concentrations.


Marine Environmental Research | 2009

Stock and losses of trace metals from salt marsh plants.

Isabel Caçador; Miguel Caetano; Bernardo Duarte; Carlos Vale

Pools of Zn, Cu, Cd and Co in the leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analysed for a Tagus estuary (Portugal) salt marsh. Pools of Cu and Cd in the salt marsh were higher in spring/summer, indicating a net uptake of these metals during the growing season. Standing stocks of Zn, Cu, Cd and Co in the leaf and stem biomass of S. fruticosa, S. perennis and H. portulacoides showed a strong seasonal variation, with higher values recorded in autumn. The metal-containing leaves and stems that shed in the autumn become metal-containing detritus. The amount of this material washed out from the total marsh area (200 ha) was estimated as 68 kg of Zn, 8.2 kg of Cu, 13 kg of Co and 0.35 kg of Cd. The high tidal amplitude, a branched system of channels and semi-diurnal tidal cycle greatly favour the export of the organic detritus to adjoining marsh areas.


Mycorrhiza | 2001

Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal)

Luís Miguel Carvalho; Isabel Caçador; Maria Amélia Martins-Loução

Abstract. The factors which may influence temporal and spatial variation in plant arbuscular mycorrhizal (AM) colonization and propagule occurrence were evaluated in a Portuguese salt marsh poor in plant diversity. Two distinct sites were studied: a more-flooded (low marsh) and a less-flooded zone (high marsh). AM root colonization, AM fungal spore number and inoculum potential, soil edaphic parameters and tidal flooding time periods were analysed. Levels of AM colonization were considerable in Aster tripolium and Inula crithmoides but very low in Puccinellia maritima and non-existent in Spartina maritima, Halimione portulacoides, Arthrocnemum fruticosum and Arthrocnemum perenne. Fungal diversity was very low, with Glomus geosporum dominant at both marsh zones. Colonization showed no spatial variation within marsh zones but temporal variation was observed in the high marsh, dependent on plant phenological phases. In the low marsh, no significantly seasonal variation was observed. Apparently, plant phenological events were diluted by stressful conditions (e.g. flooding, salinity). Spore density was significantly different between marsh zones and showed temporal variation in both zones. This study showed that distribution of mycorrhizas in salt marsh is more dependent on host plant species than on environmental stresses.


Environmental Pollution | 2010

Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal)

Bernardo Duarte; Miguel Caetano; P. R. Almeida; Carlos Vale; Isabel Caçador

Pools of Zn, Cu, Cd and Co in leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analyzed on a bimonthly basis, in a Tagus estuary salt marsh. All the major concentrations were found in the root tissues, being the concentrations in the aboveground organs neglectable for sediment budget proposes, as seen by the low root-aboveground translocation. Metal annual accumulation, root turnovers and cycling coefficients were also assessed. S. maritima showed the higher root turnovers and cycling coefficients for most of the analyzed metals, making this a phytostabilizer specie. By contrast the low root turnover, cycling coefficient and low root necromass generation makes S. perennis the most suitable specie for phytoremediation processes. Although the high amounts of metal return to the sediments, due to root senescence, salt marshes can still be considered sinks of heavy metals, cycling heavy metals mostly between sediment and root.


Environmental Pollution | 2008

Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems

Ana I. Sousa; Ana I. Lillebø; Isabel Caçador; M.A. Pardal

Salt marshes are among the most productive ecosystems in the world, performing important ecosystem functions, particularly nutrient recycling. In this study, a comparison is made between Mondego and Tagus estuaries in relation to the role of Spartina maritima in nitrogen retention capacity and cycling. Two mono-specific S. maritima stands per estuary were studied during 1yr (biomass, nitrogen (N) pools, litter production, decomposition rates). Results showed that the oldest Tagus salt marsh population presented higher annual belowground biomass and N productions, and a slower decomposition rate for litter, contributing to the higher N accumulation in the sediment, whereas S. maritima younger marshes had higher aboveground biomass production. Detritus moved by tides represented a huge amount of aboveground production, probably significant when considering the N balance of these salt marshes. Results reinforce the functions of salt marshes as contributing to a reduction of eutrophication in transitional waters, namely through sedimentation processes.


Journal of Aquatic Ecosystem Health | 1996

The influence of plants on concentration and fractionation of Zn, Pb, and Cu in salt marsh sediments (Tagus Estuary, Portugal)

Isabel Caçador; Carlos Vale; Fernando Catarino

Sediment cores were collected from two sites of the Tagus estuary salt marshes which differed in degree of metal contamination. At each site, six 60-cm-long cores were taken, three from a non-vegetated intertidal zone, and one from each of areas colonized by salt marsh plants, Spartina maritima, Halimione portulacoides and Arthrocnemum fruticosum, respectively. Total concentrations and concentrations in sequential extractions of Zn, Pb, and Cu were determined in several sediment layers. Sediment slices containing most of the roots (5–15-cm depth) were enriched in metals in comparison with other depths in the core and with non-vegetated cores. Additionally, metals in sediment slices with roots were preferentially linked to the residual fraction. These results are evidence that aquatic plant roots can have a strong influence on metal concentration and speciation in sediments. Since metals become immobilized in vegetated sediments, the preservation of salt marshes or the creation of artificial wetlands could be considered as an efficient natural means for maintaining ecosystem health or restoring ecosystem quality.


Chemosphere | 2008

Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh

Bernardo Duarte; Rosa Reboreda; Isabel Caçador

The influence of salt marsh sediment extracellular enzymatic activity (EEA) on metal fractions and organic matter cycling was evaluated on a seasonal basis, in order to study the relation between organic matter cycles and the associated metal species. Metals in the rhizosediment of Halimione portulacoides were fractioned according to the Tessiers scheme and showed a similar pattern regarding the organic-bound fraction, being always high in Autumn, matching the season when organic matter presented higher values. Both organic-bound and residual fractions were always dominant, being the seasonal variations due to interchanges between these two fractions. Phenol oxidase and beta-N-acetylglucosaminidase had higher activities during the Spring and Summer, contrarily to peroxidase which had higher activity during Winter. Protease showed high activities in both Spring and Winter. These different periods of high organic matter hydrolysis caused two periods of organic metal bound decrease. Sulphatase peaks (Spring and Winter) matched the depletion of exchangeable metal forms, probably due to sulphides formation and consequent mobilization. This showed an interaction between several microbial activities affecting metal speciation.


Plant and Soil | 2006

Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L.

Luís Miguel Carvalho; Isabel Caçador; M. Amélia Martins-Loução

It is known that vegetation plays an important role in the retention of heavy metals in salt marshes by taking up and accumulating the metals. In this study, we investigated whether arbuscular mycorrhizal fungi (AMF) increase Cd and Cu uptake and accumulation in the root system of the salt marsh species Aster tripolium L., and whether indigenous AMF isolated from polluted salt marshes have higher capacity to resist and alleviate metal stress in A. tripolium than isolates of the same species originated from non-polluted sites. Plants inoculated with Glomus geosporum, either isolated from a polluted salt marsh site (PL isolate) or from a non-polluted site (NP isolate), and non-mycorrhizal (NM) plants were compared in a pot experiment at four different Cd and Cu concentrations. Cd had no effect in root colonization, whereas high concentrations of Cu decreased colonization level in plants inoculated with the NP isolate. AM colonization did not increase plant dry weight or P concentration but influenced root Cd and Cu concentrations. Inoculation with PL and NP isolates enhanced root Cd and Cu concentrations, especially at highest metal addition levels, as compared to NM plants, without increasing shoot Cd and Cu concentrations. There was no evidence of intraspecific variation in the effects between AMF isolated from polluted and non-polluted sites, since there were no differences between plants inoculated with PL or NP isolate in any of the tested plant variables. The results of this study showed that AMF enhance metal accumulation in the root system of A. tripolium, suggesting a contribution of AMF to the sink of metals within vegetation in the salt marshes.


Hydrobiologia | 2008

Mobility of metals in salt marsh sediments colonised by Spartina maritima (Tagus estuary, Portugal)

Rosa Reboreda; Isabel Caçador; Sílvia Pedro; P. R. Almeida

Chemical associations of Zn, Pb, Cu, Co and Cd were determined using a sequential extraction procedure in sediments colonised by S. maritima in three salt marshes within the Tagus estuary: Rosário, Corroios and Pancas. Concentrations of these metals were also analysed in above- and belowground parts of Spartina maritima, as well as in sediments colonised by the plant. The highest metal concentrations in sediments were found in the marshes near the industrial and urban areas, whereas metal concentrations in plants were not significantly different among sites. This was thought to be a consequence of differences observed in metal bioavailability: Metals in Pancas, the least polluted location, were largely associated to easily accessible fractions for plant uptake, probably as a result of low organic matter content and high sandy fraction in sediments. S. maritima was able to induce the concentration of metals between its roots in the three salt marshes. The results obtained in this study indicate that S. maritima could be useful to induce phytostabilisation of metals in sediments, although the effectiveness to modify chemical associations is highly dependent on existing sediment parameters, and thus different results could be obtained depending on site characteristics.


Marine Pollution Bulletin | 2010

The influence of Spartina maritima on carbon retention capacity in salt marshes from warm-temperate estuaries.

Ana I. Sousa; Ana I. Lillebø; M.A. Pardal; Isabel Caçador

Salt marshes constitute highly productive systems playing an important role on ecosystem functions. The aim of this study is to compare the role of Spartina maritima salt marshes on carbon cycling. Thus, four salt marshes located in two mesotidal estuarine systems (Tagus and Mondego, two salt marshes per estuary) were studied. The S. maritima above- and belowground biomass, carbon production, decomposition rates (through a litterbag experiment) and carbon content in the sediment were estimated for a one year period in both systems and compared. In Corroios (located at the Tagus estuary) S. maritima salt marsh had the highest belowground production (1008 gC m(-2) y(-1)), slower decomposition rate (k=0.0024 d(-1)), and the highest carbon content in sediments (750 gC m(-2) y(-1)); and thus, the highest carbon retention capacity. The other three salt marshes had comparatively higher aboveground productions, higher decomposition rates and lower carbon retention capacity. Therefore, Corroios had the most important carbon cycling characteristics. As a whole, results show that differences in carbon cycling in salt marshes depend mostly on its own characteristics and maturity, rather than the system itself. The intrinsic characteristics of the salt marshes, namely the physicochemical conditions determined by the maturity of the system, are more important factors affecting the role of warm-temperate mesotidal salt marshes as carbon sinks.

Collaboration


Dive into the Isabel Caçador's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge