Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Devesa is active.

Publication


Featured researches published by Isabel Devesa.


Blood | 2009

Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages.

Mihea G Netea; Claudia A. Nold-Petry; Marcel F. Nold; Leo A. B. Joosten; Bastian Opitz; Jonathan H M van der Meer; Frank L. van de Veerdonk; Gerben Ferwerda; Bas Heinhuis; Isabel Devesa; C. Joel Funk; Robert J. Mason; Bart Jan Kullberg; Anna Rubartelli; Jos W. M. van der Meer; Charles A. Dinarello

The processing of pro-interleukin-1beta depends on activation of caspase-1. Controversy has arisen whether Toll-like receptor (TLR) ligands alone can activate caspase-1 for release of interleukin-1beta (IL-1beta). Here we demonstrate that human blood monocytes release processed IL-1beta after a one-time stimulation with either TLR2 or TLR4 ligands, resulting from constitutively activated caspase-1 and release of endogenous adenosine triphosphate. The constitutive activation of caspase-1 depends on the inflammasome components, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and NALP3, but in monocytes caspase-1 activation is uncoupled from pathogen-associated molecular pattern recognition. In contrast, macrophages are unable to process and release IL-1beta solely by TLR ligands and require a second adenosine triphosphate stimulation. We conclude that IL-1beta production is differentially regulated in monocytes and macrophages, and this reflects their separate functions in host defense and inflammation.


Journal of Clinical Investigation | 2008

Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis

Shahla Abdollahi-Roodsaz; Leo A. B. Joosten; Marije I. Koenders; Isabel Devesa; Mieke F. Roelofs; Timothy R. D. J. Radstake; Marleen Heuvelmans-Jacobs; Shizuo Akira; Martin J.H. Nicklin; Fátima Ribeiro-Dias; Wim B. van den Berg

TLRs may contribute to the progression of rheumatoid arthritis through recognition of microbial or host-derived ligands found in arthritic joints. Here, we show that TLR2 and TLR4, but not TLR9, are involved in the pathogenesis of autoimmune arthritis and play distinct roles in the regulation of T cells and cytokines. We investigated the involvement of TLR2, TLR4, and TLR9 in the progression of arthritis using IL-1 receptor antagonist-knockout (IL1rn-/-) mice, which spontaneously develop an autoimmune T cell-mediated arthritis. Spontaneous onset of arthritis was dependent on TLR activation by microbial flora, as germ-free mice did not develop arthritis. Clinical and histopathological evaluation of IL1rn-/-Tlr2-/- mice revealed more severe arthritis, characterized by reduced suppressive function of Tregs and substantially increased IFN-gamma production by T cells. IL1rn-/-Tlr4-/- mice were, in contrast, protected against severe arthritis and had markedly lower numbers of Th17 cells and a reduced capacity to produce IL-17. A lack of Tlr9 did not affect the progression of arthritis. While any therapeutic intervention targeting TLR2 still seems complicated, the strict position of TLR4 upstream of a number of pathogenic cytokines including IL-17 provides an interesting potential therapeutic target for rheumatoid arthritis.


Arthritis & Rheumatism | 2011

Tumor necrosis factor–interleukin-17 interplay induces S100A8, interleukin-1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis

Marije I. Koenders; Renoud J. Marijnissen; Isabel Devesa; Erik Lubberts; Leo A. B. Joosten; J. Roth; Peter L. E. M. van Lent; Fons A. J. van de Loo; Wim B. van den Berg

OBJECTIVE To examine whether synovial interleukin-17 (IL-17) expression promotes tumor necrosis factor (TNF)-induced joint pathologic processes in vivo, and to analyze the surplus ameliorative value of neutralizing IL-17 in addition to TNF during collagen-induced arthritis (CIA). METHODS Adenoviral vectors were used to induce overexpression of IL-17 and/or TNF in murine knee joints. In addition, mice with CIA were treated, at different stages of arthritis, with soluble IL-17 receptor (sIL-17R), TNF binding protein (TNFBP), or the combination. RESULTS Overexpression of IL-17 and TNF resulted in joint inflammation and bone erosion in murine knees. Interestingly, IL-17 strikingly enhanced both the joint-inflammatory and joint-destructive capacity of TNF. Further analysis revealed a strongly enhanced up-regulation of S100A8, IL-1β, and matrix metalloproteinase (MMP) messenger RNA, only when both TNF and IL-17 were present. Moreover, the increase in irreversible cartilage destruction was not merely the result of enhanced inflammation, but also was associated with a direct synergistic effect of these cytokines in the joint. S100A9 deficiency in mice protected against IL-17/TNF-induced expression of cartilage NITEGE neoepitopes. During established arthritis, the combination of sIL-17R and TNFBP was more effective than the anticytokine treatments alone, and significantly inhibited further joint inflammation and cartilage destruction. CONCLUSION Local synovial IL-17 expression enhances the role of TNF in joint destruction. Synergy between TNF and IL-17 in vivo results in striking exaggeration of cartilage erosion, in parallel with a synergistic up-regulation of S100A8, IL-1β, and erosive MMPs. Moreover, neutralizing IL-17 in addition to TNF further improves protection against joint damage and is still effective during late-stage CIA. Therefore, compared with anti-TNF alone, combination blocking of TNF and IL-17 may have additional therapeutic value for the treatment of destructive arthritis.


Arthritis & Rheumatism | 2008

Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist–deficient mice

Marije I. Koenders; Isabel Devesa; Renoud J. Marijnissen; Shahla Abdollahi-Roodsaz; Annemieke M. H. Boots; Birgitte Walgreen; Franco Di Padova; Martin J.H. Nicklin; Leo A. B. Joosten; Wim B. van den Berg

OBJECTIVE Interleukin-1 receptor antagonist-deficient (IL-1Ra-/-) mice spontaneously develop an inflammatory and destructive arthritis due to unopposed excess IL-1 signaling. In this study, the role of Th17 cells and the effect of neutralization of IL-17, IL-1, and tumor necrosis factor alpha (TNFalpha) were investigated in this IL-1-driven murine arthritis model. METHODS T cells isolated from IL-1Ra-/- and wild-type (WT) mice were stained for IL-17 and interferon-gamma, with results assessed by fluorescence-activated cell sorting analysis. To investigate the contribution of IL-1 and IL-17 in further progression of arthritis in this model, mice were treated with neutralizing antibodies after the onset of arthritis. RESULTS Compared with WT mice, IL-1Ra-/- mice had similar levels of Th1 cells but clearly enhanced levels of Th17 cells; this increase in the number of Th17 cells was evident even before the onset of arthritis, in young, nonarthritic IL-1Ra-/- mice. The percentage of Th17 cells increased even more after the onset of arthritis and, similar to the serum levels and local messenger RNA levels of IL-17, the percentage of IL-17+ Th17 cells clearly correlated with the severity of arthritis. Anti-IL-17 treatment prevented any further increase in inflammation and bone erosion, whereas blocking of TNFalpha after the onset of arthritis had no effect. In contrast, neutralization of IL-1 resulted in a complete suppression of arthritis. Interestingly, this anti-IL-1 treatment also significantly reduced the percentage of IL-17+ Th17 cells in the draining lymph nodes of these arthritic mice. CONCLUSION Increased levels of Th17 cells can be detected in IL-1Ra-/- mice even preceding the onset of arthritis. In addition, the results of cytokine-blocking studies demonstrated that IL-17 contributes to the inflammation and bone erosion in this model, which suggests that IL-1 is the driving force behind the IL-17-producing Th17 cells.


Bioorganic & Medicinal Chemistry | 2003

6-Dimethylamino 1H-pyrazolo[3,4-d]pyrimidine derivatives as new inhibitors of inflammatory mediators in intact cells.

José M. Quintela; Carlos Peinador; Liliana González; Isabel Devesa; M.Luisa Ferrándiz; María José Alcaraz; Ricardo Riguera

The synthesis of 6-dimethylamino 1H-pyrazolo[3,4-d]pyrimidines substituted at positions 1 and 4, and their effects on murine macrophage and human neutrophil functions are described. Several compounds and especially 4b-6b are potent inhibitors of PGE(2) generation in murine macrophages. This action is related to a direct effect on COX-2 activity without affecting the enzyme expression. Some of these compounds also inhibited COX-1 and COX-2 in human monocytes and 4b showed selectivity for COX-2 inhibition.


European Journal of Pharmacology | 2010

The CO-releasing molecule CORM-3 protects against articular degradation in the K/BxN serum transfer arthritis model.

Nuria Maicas; María Luisa Ferrándiz; Isabel Devesa; Roberto Motterlini; Marije I. Koenders; Wim B. van den Berg; María José Alcaraz

Carbon monoxide-releasing molecules can counteract inflammatory responses. The aim of this study was to investigate whether tricarbonylchloro(glycinate)ruthenium (II) (CORM-3) is able to control the effector phase of experimental arthritis. Arthritis was induced in C57Black-6 mice by an intraperitoneal injection of serum from arthritic K/BxN mice. CORM-3 was administered intraperitoneally at 10 mg/kg/day (5 mg/kg twice a day) from days 0 to 10 and animals were sacrificed on day 11. Serum levels of osteocalcin and prostanoids were measured by enzyme-linked immunosorbent assay and radioimmunoassay. Gene expression was determined by real-time PCR. Histological analysis was performed and protein expression was examined by immunohistochemistry. Treatment with CORM-3 reduced the macroscopic score in hind paws, the migration of inflammatory cells and erosion of cartilage and bone. CORM-3 increased the levels of osteocalcin in the serum and reduced PGD2 levels, whereas PGE2 and 6-ketoPGF1alpha were not affected. In synovial tissues, we also observed a significant reduction in gene expression of interleukin-1beta, receptor activator of nuclear factor kappaB ligand (RANKL), matrix metalloproteinase (MMP)-9 and MMP-13. CORM-3 induced HO-1 expression in joint tissues but inhibited high mobility group box 1 (HMGB1), hematopoietic-prostaglandin D2 synthase (H-PGDS) and lipocalin-type prostaglandin D2 synthase (L-PGDS), as well as RANKL and intercellular adhesion molecule-1. COX-2 expression was not affected by CORM-3 treatment. We have shown that CORM-3 decreases the inflammatory response and protects against the degradation of cartilage and bone in the arthritic mice. Pharmacological CO delivery represents a novel strategy to regulate the effector phase of arthritis.


Laboratory Investigation | 2005

Potential role of heme oxygenase-1 in the progression of rat adjuvant arthritis.

Isabel Devesa; María Luisa Ferrándiz; Isabel Guillén; José M. Cerdá; María José Alcaraz

Rat adjuvant arthritis is an experimental model widely used to evaluate etiopathogenetic mechanisms in chronic inflammation. We have examined the participation of heme oxygenase-1 (HO-1) in this experimental arthritis. In this study, an increased nitric oxide (NO) production in the paw preceded the upregulation of HO-1, whereas selective inhibition of inducible NO synthase (iNOS) after the onset of arthritis decreased HO-1 expression, suggesting that the induction of this enzyme may depend on NO produced by iNOS. Therapeutic administration of the HO-1 inhibitor tin protoporphyrin IX was able to control the symptoms of arthritis. This agent significantly decreased leukocyte infiltration, hyperplastic synovitis, erosion of articular cartilage and osteolysis, as well as the production of inflammatory mediators. In this experimental model, HO-1 can be involved in vascular endothelial growth factor production and angiogenesis. These results support a role for HO-1 in mediating the progression of the disease in this model of chronic arthritis.


The Journal of Infectious Diseases | 2009

Bypassing Pathogen-Induced Inflammasome Activation for the Regulation of Interleukin-1β Production by the Fungal Pathogen Candida albicans

Frank L. van de Veerdonk; Leo A. B. Joosten; Isabel Devesa; Héctor M. Mora-Montes; Thirumala-Devi Kanneganti; Charles A. Dinarello; Jos W. M. van der Meer; Neil A. R. Gow; Bart Jan Kullberg; Mihai G. Netea


Arthritis & Rheumatism | 2005

Influence of heme oxygenase 1 modulation on the progression of murine collagen-induced arthritis.

Isabel Devesa; María Luisa Ferrándiz; María Carmen Terencio; Leo A. B. Joosten; Wim B. van den Berg; María José Alcaraz


Annals of the Rheumatic Diseases | 2007

Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis

María Luisa Ferrándiz; Nuria Maicas; I. Garcia-Arnandis; María Carmen Terencio; Roberto Motterlini; Isabel Devesa; L.A.B. Joosten; W.B. van den Berg; María José Alcaraz

Collaboration


Dive into the Isabel Devesa's collaboration.

Top Co-Authors

Avatar

Leo A. B. Joosten

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marije I. Koenders

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bas Heinhuis

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Gerben Ferwerda

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Claudia A. Nold-Petry

Hudson Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge