Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Dominguez is active.

Publication


Featured researches published by Isabel Dominguez.


Cell | 1993

Protein kinase C ζ isoform is critical for mitogenic signal transduction

Edurne Berra; Maria T. Diaz-Meco; Isabel Dominguez; M M Municio; Laura Sanz; José Lozano; Robert S. Chapkin; Jorge Moscat

The requirement of protein kinase C zeta (zeta PKC) for maturation of X. laevis oocytes in response to insulin, p21ras, and phosphatidylcholine-hydrolyzing phospholipase C has recently been shown. Here we present experimental evidence demonstrating that activation of zeta PKC is not only necessary but also sufficient by itself to activate maturation in oocytes and to produce deregulation of growth control in mouse fibroblasts. Furthermore, by using a dominant kinase-defective mutant of zeta PKC, we confirm that this kinase is required for mitogenic activation in oocytes and fibroblasts. These results permit us to propose zeta PKC as a critical step downstream of p21ras in mitogenic signal transduction.


Molecular and Cellular Biology | 1993

A dominant negative protein kinase C zeta subspecies blocks NF-kappa B activation.

Maria T. Diaz-Meco; E Berra; M M Municio; Laura Sanz; J Lozano; Isabel Dominguez; V Diaz-Golpe; M T Lain de Lera; J Alcamí; C V Payá

Nuclear factor kappa B (NF-kappa B) plays a critical role in the regulation of a number of genes. NF-kappa B is a heterodimer of 50- and 65-kDa subunits sequestered in the cytoplasm complexed to inhibitory protein I kappa B. Following stimulation of cells, I kappa B dissociates from NF-kappa B, allowing its translocation to the nucleus, where it carries out the transactivation function. The precise mechanism controlling NF-kappa B activation and the involvement of members of the protein kinase C (PKC) family of isotypes have previously been investigated. It was found that phorbol myristate acetate, (PMA) which is a potent stimulant of phorbol ester-sensitive PKC isotypes, activates NF-kappa B. However, the role of PMA-sensitive PKCs in vivo is not as apparent. It has recently been demonstrated in the model system of Xenopus laevis oocytes that the PMA-insensitive PKC isotype, zeta PKC, is a required step in the activation of NF-kappa B in response to ras p21. We demonstrate here that overexpression of zeta PKC is by itself sufficient to stimulate a permanent translocation of functionally active NF-kappa B into the nucleus of NIH 3T3 fibroblasts and that transfection of a kinase-defective dominant negative mutant of zeta PKC dramatically inhibits the kappa B-dependent transactivation of a chloramphenicol acetyltransferase reporter plasmid in NIH 3T3 fibroblasts. All these results support the notion that zeta PKC plays a decisive role in NF-kappa B regulation in mammalian cells.


Molecular and Cellular Biology | 2008

The Alpha Catalytic Subunit of Protein Kinase CK2 Is Required for Mouse Embryonic Development

David Y. Lou; Isabel Dominguez; Paul Toselli; Esther Landesman-Bollag; Conor O'Brien; David C. Seldin

ABSTRACT Protein kinase CK2 (formerly casein kinase II) is a highly conserved and ubiquitous serine/threonine kinase that is composed of two catalytic subunits (CK2α and/or CK2α′) and two CK2β regulatory subunits. CK2 has many substrates in cells, and key roles in yeast cell physiology have been uncovered by introducing subunit mutations. Gene-targeting experiments have demonstrated that in mice, the CK2β gene is required for early embryonic development, while the CK2α′ subunit appears to be essential only for normal spermatogenesis. We have used homologous recombination to disrupt the CK2α gene in the mouse germ line. Embryos lacking CK2α have a marked reduction in CK2 activity in spite of the presence of the CK2α′ subunit. CK2α−/− embryos die in mid-gestation, with abnormalities including open neural tubes and reductions in the branchial arches. Defects in the formation of the heart lead to hydrops fetalis and are likely the cause of embryonic lethality. Thus, CK2α appears to play an essential and uncompensated role in mammalian development.


Nature Cell Biology | 2008

Jade-1 inhibits Wnt signalling by ubiquitylating |[beta]|-catenin and mediates Wnt pathway inhibition by pVHL

Vipul Chitalia; Rebecca L. Foy; Markus Bachschmid; Liling Zeng; Maria V. Panchenko; Mina I. Zhou; Ajit Bharti; David C. Seldin; Stewart H. Lecker; Isabel Dominguez; Herbert T. Cohen

The von Hippel–Lindau protein pVHL suppresses renal tumorigenesis in part by promoting the degradation of hypoxia-inducible HIF-α transcription factors; additional mechanisms have been proposed. pVHL also stabilizes the plant homeodomain protein Jade-1, which is a candidate renal tumour suppressor that may correlate with renal cancer risk. Here we show that Jade-1 binds the oncoprotein β-catenin in Wnt-responsive fashion. Moreover, Jade-1 destabilizes wild-type β-catenin but not a cancer-causing form of β-catenin. Whereas the well-established β-catenin E3 ubiquitin ligase component β-TrCP ubiquitylates only phosphorylated β-catenin, Jade-1 ubiquitylates both phosphorylated and non-phosphorylated β-catenin and therefore regulates canonical Wnt signalling in both Wnt-off and Wnt-on phases. Thus, the different characteristics of β-TrCP and Jade-1 may ensure optimal Wnt pathway regulation. Furthermore, pVHL downregulates β-catenin in a Jade-1-dependent manner and inhibits Wnt signalling, supporting a role for Jade-1 and Wnt signalling in renal tumorigenesis. The pVHL tumour suppressor and the Wnt tumorigenesis pathway are therefore directly linked through Jade-1.


Toxicologic Pathology | 2005

Oncogenic Signaling Pathways Activated in DMBA-Induced Mouse Mammary Tumors

Nicolas Currier; Sandra Solomon; Elizabeth G. Demicco; Donny L.F. Chang; Marganit Farago; Haoqiang Ying; Isabel Dominguez; Gail E. Sonenshein; Robert D. Cardiff; Zhi Xiong Jim Xiao; David H. Sherr; David C. Seldin

Only about 5% of human breast cancers can be attributed to inheritance of breast cancer susceptibility genes, while the balance are considered to be sporadic in origin. Breast cancer incidence varies with diet and other environmental influences, including carcinogen exposure. However, the effects of environmental carcinogens on cell growth control pathways are poorly understood. Here we have examined oncogenic signaling pathways that are activated in mammary tumors in mice treated with the prototypical polycyclic aromatic hydrocarbon (PAH) 7,12-dimethylbenz[a]anthracene (DMBA). In female FVB mice given 6 doses of 1 mg of DMBA by weekly gavage beginning at 5 weeks of age, all of the mice developed tumors by 34 weeks of age (median 20 weeks after beginning DMBA); 75% of the mice had mammary tumors. DMBA-induced mammary tumors exhibited elevated expression of the aryl hydrocarbon receptor (AhR), c-myc, cyclin D1, and hyperphosphorylated retinoblastoma (Rb) protein. Because of this, the activation of upstream regulatory pathways was assessed, and elements of the Wnt signaling pathway, the NF-κB pathway, and the prolyl isomerase Pin-1 were found to be frequently up-regulated in the tumors when compared to normal mammary gland controls. These data suggest that environmental carcinogens can produce long-lasting alterations in growth and anti-apoptotic pathways, leading to mammary tumorigenesis.


Cancer Research | 2005

Kinase-Inactive Glycogen Synthase Kinase 3B Promotes Wnt Signaling and Mammary Tumorigenesis

Marganit Farago; Isabel Dominguez; Esther Landesman-Bollag; Xin Xu; Andrea Rosner; Robert D. Cardiff; David C. Seldin

Recent studies have implicated ectopic activation of the Wnt pathway in many human cancers, including breast cancer. beta-catenin is a critical coactivator in this signaling pathway and is regulated in a complex fashion by phosphorylation, degradation, and nuclear translocation. Glycogen synthase kinase 3beta (GSK3beta) phosphorylation of the NH2-terminal domain of beta-catenin targets it for ubiquitination and proteosomal degradation. We hypothesized that expression of kinase-inactive GSK3beta (KI-GSK3beta) in mammary glands would function in a dominant-negative fashion by antagonizing the endogenous activity of GSK3beta and promoting breast cancer development. Consistent with this, we find that KI-GSK3beta stabilizes beta-catenin expression, catalyzes its localization to the nucleus, and up-regulates the downstream target gene, cyclin D1, in vitro. In vivo, transgenic mice overexpressing the KI-GSK3beta under the control of the mouse mammary tumor virus-long terminal repeat develop mammary tumors with overexpression of beta-catenin and cyclin D1. Thus, antagonism of GSK3beta activity is oncogenic in the mammary epithelium; mutation or pharmacologic down-regulation of GSK3beta could promote mammary tumors.


Circulation Research | 2012

Mitofusins 1 and 2 are Essential for Postnatal Metabolic Remodeling in Heart

Kyriakos N. Papanicolaou; Ryosuke Kikuchi; Gladys A. Ngoh; Kimberly A. Coughlan; Isabel Dominguez; William C. Stanley; Kenneth Walsh

Rationale: At birth, there is a switch from placental to pulmonary circulation and the heart commences its aerobic metabolism. In cardiac myocytes, this transition is marked by increased mitochondrial biogenesis and remodeling of the intracellular architecture. The mechanisms governing the formation of new mitochondria and their expansion within myocytes remain largely unknown. Mitofusins (Mfn-1 and Mfn-2) are known regulators of mitochondrial networks, but their role during perinatal maturation of the heart has yet to be examined. Objective: The objective of this study was to determine the significance of mitofusins during early postnatal cardiac development. Methods and Results: We genetically inactivated Mfn-1 and Mfn-2 in midgestational and postnatal cardiac myocytes using a loxP/Myh6-cre approach. At birth, cardiac morphology and function of double-knockout (DKO) mice are normal. At that time, DKO mitochondria increase in numbers, appear to be spherical and heterogeneous in size, but exhibit normal electron density. By postnatal day 7, the mitochondrial numbers in DKO myocytes remain abnormally expanded and many lose matrix components and membrane organization. At this time point, DKO mice have developed cardiomyopathy. This leads to a rapid decline in survival and all DKO mice die before 16 days of age. Gene expression analysis of DKO hearts shows that mitochondria biogenesis genes are downregulated, the mitochondrial DNA is reduced, and mitochondrially encoded transcripts and proteins are also reduced. Furthermore, mitochondrial turnover pathways are dysregulated. Conclusions: Our findings establish that Mfn-1 and Mfn-2 are essential in mediating mitochondrial remodeling during postnatal cardiac development, a time of dramatic transitions in the bioenergetics and growth of the heart.


Cellular and Molecular Life Sciences | 2009

Protein Kinase CK2 in Health and Disease

Isabel Dominguez; Gail E. Sonenshein; David C. Seldin

Abstract.CK2 is a highly conserved tetrameric serine/ threonine kinase present in all eukaryotic organisms. It is constitutively active, and appears to be regulated by level of expression and activity, and subcellular localization. In turn, it has been postulated to control the function of many proteins through changes in phosphorylation that affect protein stability, protein-protein interactions, and subcellular localization. Through these mechanisms, CK2 regulates many fundamental cellular properties. An enzyme that carries out such a master regulatory function is likely to be important in organismic development and in cancer. We have shown that overexpression of CK2 catalytic subunits is capable of promoting tumorigenesis, and that loss of CK2 catalytic subunits in development can be lethal. Through studies in cells, mice, and frogs, we and others have identified the Wnt and NF-κB pathways as two key signal transduction pathways that are regulated by CK2 activity, in embryonic development and in cancer. These results suggest that inhibiting CK2 could be useful in treating cancer, but dangerous to developing organisms.


EMBO Reports | 2008

β-Arrestin and casein kinase 1/2 define distinct branches of non-canonical WNT signalling pathways

Vítĕzslav Bryja; Alexandra Schambony; Lukás̆ Čajánek; Isabel Dominguez; Ernest Arenas; Gunnar Schulte

Recent advances in understanding β‐catenin‐independent WNT (non‐canonical) signalling suggest an increasing complexity, raising the question of how individual non‐canonical pathways are induced and regulated. Here, we examine whether intracellular signalling components such as β‐arrestin (β‐arr) and casein kinases 1 and 2 (CK1 and CK2) can contribute to determining signalling specificity in β‐catenin‐independent WNT signalling to the small GTPase RAC‐1. Our findings indicate that β‐arr is sufficient and required for WNT/RAC‐1 signalling, and that casein kinases act as a switch that prevents the activation of RAC‐1 and promotes other non‐canonical WNT pathways through the phosphorylation of dishevelled (DVL, xDSH in Xenopus). Thus, our results indicate that the balance between β‐arr and CK1/2 determines whether WNT/RAC‐1 or other non‐canonical WNT pathways are activated.


Molecular and Cellular Biochemistry | 2008

Gene targeting of CK2 catalytic subunits

David C. Seldin; David Y. Lou; Paul Toselli; Esther Landesman-Bollag; Isabel Dominguez

Protein kinase CK2 is a highly conserved and ubiquitous serine–threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2β subunits and two catalytic subunits, either CK2α/CK2α, CK2α/CK2α′, or CK2α′/CK2α′. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2α′ is essential for male germ cell development, and we now demonstrate that CK2α has an essential role in embryogenesis, as mice lacking CK2α die in mid-embryogenesis, with cardiac and neural tube defects.

Collaboration


Dive into the Isabel Dominguez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene R. Dégano

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge