Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Neuman is active.

Publication


Featured researches published by Isabel Neuman.


PLOS ONE | 2008

A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis.

Cecilia Poderoso; Daniela P. Converso; Paula Maloberti; Alejandra Duarte; Isabel Neuman; Soledad Galli; Fabiana Cornejo Maciel; Maria Cecilia Carreras; Juan José Poderoso; Ernesto J. Podestá

ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein –a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser232. Directed mutagenesis of Ser232 to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.


Molecular and Cellular Endocrinology | 2009

Hormonal activation of a kinase cascade localized at the mitochondria is required for StAR protein activity

Cecilia Poderoso; Paula Maloberti; Alejandra Duarte; Isabel Neuman; Fabiana Cornejo Maciel; Ernesto J. Podestá

It is known that ERK1/2 and MEK1/2 participate in the regulation of Star gene transcription. However, their role in StAR protein post-transcriptional regulation is not described yet. In this study we analyzed the relationship between the MAPK cascade and StAR protein phosphorylation and function. We have demonstrated that (a) steroidogenesis in MA-10 Leydig cells depends on the specific of ERK1/2 activation at the mitochondria; (b) ERK1/2 phosphorylation is driven by mitochondrial PKA and constitutive MEK1/2 in this organelle; (c) active ERK1/2 interacts with StAR protein, leads to StAR protein phosphorylation at Ser(232) only in the presence of cholesterol; (d) directed mutagenesis of Ser(232) (S232A) inhibited in vitro StAR protein phosphorylation by ERK1; (e) transient transfection of MA-10 cells with StAR S232A cDNA markedly reduced the yield of progesterone production. We show that StAR protein is a substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric complex that regulates cholesterol transport.


Endocrine Research | 1997

Involvement of arachidonic acid and the lipoxygenase pathway in mediating luteinizing hormone-induced testosterone synthesis in rat leydig cells

Pablo G. Mele; Laura A. Dada; Isabel Neuman; Cora Cymeryng; Carlos F. Mendez; Carla V. Finkielstein; Fabiana Cornejo Maciel; Ernesto J. Podestá

Evidence has been introduced linking the lipoxygenase products and steroidogenesis in Leydig cells, thereby supporting that this pathway may be a common event in the hormonal control of steroid synthesis. On the other hand, it has also been reported that lipoxygenase products of arachidonic acid (AA) may not be involved in Leydig cells steroidogenesis. In this paper, we investigated the effects of PLA2 and lipoxygenase pathway inhibitors on steroidogenesis in rat testis Leydig cells. The effects of two structurally unrelated PLA2 inhibitors (4-bromophenacyl bromide (BPB) and quinacrine) were determined. BPB blocked the LH- and Bt2cAMP-stimulated testosterone production but had no effect on 22(4)-OH-cholesterol conversion to testosterone. Quinacrine caused a dose-dependent inhibition of LH- and Bt2cAMP-induced steroidogenesis. The effects of different lipoxygenase pathway inhibitors (nordihydroguaiaretic acid (NDGA), 5,8,11,14-eicosatetraynoic acid (ETYA), caffeic acid and esculetin) have also been determined. Both NDGA and ETYA inhibited LH- and Bt2cAMP-stimulated steroid synthesis in a dose-related manner. Furthermore caffeic acid and esculetin also blocked the LH-stimulated testosterone production. Moreover, exogenous AA induced a dose-dependent increase of testosterone secretion which was inhibited by NDGA. Our results strongly support the previous concept that the lipoxygenase pathway is involved in the mechanism of action of LH on testis Leydig cells.


The Journal of Steroid Biochemistry and Molecular Biology | 2006

Protein tyrosine phosphatases regulate arachidonic acid release, StAR induction and steroidogenesis acting on a hormone-dependent arachidonic acid-preferring acyl-CoA synthetase.

Florencia Cano; Cecilia Poderoso; Fabiana Cornejo Maciel; Rocío Castilla; Paula Maloberti; Fernanda Castillo; Isabel Neuman; Ernesto J. Podestá

The activation of the rate-limiting step in steroid biosynthesis, that is the transport of cholesterol into the mitochondria, is dependent on PKA-mediated events triggered by hormones like ACTH and LH. Two of such events are the protein tyrosine dephosphorylation mediated by protein tyrosine phosphatases (PTPs) and the release of arachidonic acid (AA) mediated by two enzymes, ACS4 (acyl-CoA synthetase 4) and Acot2 (mitochondrial thioesterase). ACTH and LH regulate the activity of PTPs and Acot2 and promote the induction of ACS4. Here we analyzed the involvement of PTPs on the expression of ACS4. We found that two PTP inhibitors, acting through different mechanisms, are both able to abrogate the hormonal effect on ACS4 induction. PTP inhibitors also reduce the effect of cAMP on steroidogenesis and on the level of StAR protein, which facilitates the access of cholesterol into the mitochondria. Moreover, our results indicate that exogenous AA is able to overcome the inhibition produced by PTP inhibitors on StAR protein level and steroidogenesis. Then, here we describe a link between PTP activity and AA release, since ACS4 induction is under the control of PTP activity, being a key event for AA release, StAR induction and steroidogenesis.


Endocrine Research | 2000

Regulation of Arachidonic Acid Release in Steroidogenesis: Role of a New Acyl-Coa Thioesterase (Artist)

Paula Maloberti; Pablo G. Mele; Isabel Neuman; F. Cornejo Maciel; Florencia Cano; Paula Bey; E. J. Podesté

It has been well established that arachidonic acid (AA) and its metabolism to leukotrienes plays an obligatory role in steroid production. The release of AA is regulated by hormone stimulation and protein phosphorylation. We have cloned a cDNA of a phosphoprotein with a molecular mass of 43 kDa (p43), purified from the cytosol of stimulated adrenal glands. This protein acts as intermediary in the stimulation of steroid synthesis through AA release, and has been found to be a member of a recently described acyl-CoA thioesterase family. In view of the mandatory role of this protein in the activation of AA-mediated steroidogenesis, the term Arachidonic acid-Related Thioesterase Involved in Steroidogenesis (ARTISt), is proposed for p43. The present study describes the production of the recombinant protein by cDNA expression in Escherichia coli and its functional characterization. Recombinant acyl-CoA thioesterase was capable to release AA from the respective acyl-CoA, and this activity was affected by well-recognized inhibitors of AA release and metabolism: 4-bromophenacyl bromide (BPB) and nordihydroguariaretic acid (NDGA). In addition, the inhibition of acyl-CoA thioesterase activity by NDGA correlates with the inhibition of steroid synthesis produced by this compound in adrenal cortex cells. Moreover, the recombinant protein was phosphorylated in vitro by PKA. These results provide the first evidence linking acyl-CoA thioesterases with the regulation of steroidogenesis, and support a regulatory role for acyl-CoA thioesterases in steroidogenic tissues, suggesting an alternative pathway for AA release in signal transduction.


Endocrinology | 2008

New Enzymes Involved in the Mechanism of Action of Epidermal Growth Factor in a Clonal Strain of Leydig Tumor Cells

Rocío Castilla; Mariana Gadaleta; Ana Fernanda Castillo; Alejandra Duarte; Isabel Neuman; Fabiana Cornejo Maciel; Ernesto J. Podestá

The studies presented herein were designed to investigate the effect of mouse epidermal growth factor (mEGF) on arachidonic acid (AA) release in a clonal strain of cultured murine Leydig cells (designed MA-10). In MA-10 cells, mEGF promotes AA release and metabolism to lipoxygenated products to induce the steroidogenic acute regulatory (StAR) protein. However, the mechanism by which mEGF releases AA in these cells is not totally elucidated. We show that mEGF produces an increment in the mitochondrial AA content in a short-term incubation (30 min). This AA is released by the action of a mitochondrial acyl-CoA thioesterase (Acot2), as demonstrated in experiments in which Acot2 was down or overexpressed. This AA in turn regulates the StAR protein expression, indirect evidence of its metabolism to lipoxygenated products. We also show that mEGF induces the expression (mRNA and protein) of Acot2 and an acyl-CoA synthetase that provides the substrate, arachidonyl-CoA, to Acot2. This effect is also observed in another steroidogenic cell line, the adrenocortical Y1 cells. Taken together, our results show that: 1) mEGF can induce the generation of AA in a specific compartment of the cells, i.e. the mitochondria; 2) mEGF can up-regulate acyl-CoA synthetase and Acot2 mRNA and protein levels; and 3) mEGF-stimulated intramitochondrial AA release leads to StAR protein induction.


Endocrine Research | 2004

Arachidonic acid regulation of steroid synthesis: new partners in the signaling pathway of steroidogenic hormones.

Rocío Castilla; Paula Maloberti; Fernanda Castillo; Alejandra Duarte; Florencia Cano; F. Cornejo Maciel; Isabel Neuman; Carlos F. Mendez; Ernesto J. Podestá

Although the role of arachidonic acid (AA) in trophic hormone‐stimulated steroid production in various steroidogenic cells is well documented 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, the mechanism responsible for AA release remains unknown. We have previously shown evidence of an alternative pathway of AA generation in steroidogenic tissues. Our results are consistent with the hypothesis that, in steroidogenic cells, AA is released by the action of a mitochondrial acyl‐CoA thioesterase (MTE‐I). We have shown that recombinant MTE‐I hydrolyses arachidonoyl‐CoA to release free AA. An acyl‐CoA synthetase specific for AA, acyl‐CoA synthetase 4, has also been described in steroidogenic tissues. In the present study we investigate the new concept in the regulation of intracellular levels of AA, in which trophic hormones can release AA by mechanisms different from the classical PLA2‐mediated pathway. Inhibition of ACS4 and MTE‐I activity by triacsin C and NDGA, respectively results in a reduction of StAR mRNA and protein abundance. When both inhibitors are added together there is a synergistic effect in the inhibition of StAR mRNA, StAR protein levels and ACTH‐stimulated steroid synthesis. The inhibition of steroidogenesis produced by the NDGA and triacsin C can be overcome by the addition of exogenous AA. In summary, results shown here demonstrate a critical role of the acyl‐CoA synthetase and the acyl‐CoA thioesterase in the regulation of AA release, StAR induction, and steroidogenesis. This further suggests a new concept in the regulation of intracellular distribution of AA through a mechanism different from the classical PLA2‐mediated pathway that involves a hormone‐induced acyl‐CoA synthetase and a hormone‐regulated acyl‐CoA thioesterase.


Endocrine Research | 2004

Tyrosine phosphates act on steroidogenesis through the activation of arachidonic acid release.

Fernanda Castillo; Florencia Cano; Paula Maloberti; Rocío Castilla; Isabel Neuman; Cecilia Poderoso; Ernesto J. Podestá; Fabiana Cornejo Maciel

The ACTH signaling pathway includes both PKA activation as well as PKA‐dependent tyrosine phosphatase activation. In addition, the action of this hormone also includes the regulation of the intracellular levels of arachidonic acid (AA) by the concerted action of two enzymes: an acylCoA‐thioesterase and an acyl‐CoA‐synthetase (ACS4). This work describes the production and characterization of a specific ACS4 antibody, which was used to analyze the effect of ACTH on ACS4 protein level in Y1 adrenocortical cells and the putative relationship between tyrosine phosphatases and ACS4. The antiserum was obtained from rabbits immunized with the recombinant ACS4. This immunogen was produced in bacteria and eluted from an acrylamide gel after SDS‐PAGE separation of a partially purified bacteria lysate. When used in Western blot analysis, the antibody obtained specifically recognized only one protein of the molecular mass corresponding to ACS4, in Y1 cells and in several rat tissues. Using the antibody described here, we analyzed the effect of ACTH stimulation on ACS4 protein level. The hormone produced an increase of this acyl‐CoA synthetase in Y1 adrenocortical cells. Moreover, this effect was mimicked by cAMP and partially reduced by a tyrosine phosphatase inhibitor. We propose that ACTH regulates ACS4 protein levels through a PKA‐dependent mechanism that could involve also PTP activity.


International Journal of Hypertension | 2012

Phytoestrogens Enhance the Vascular Actions of the Endocannabinoid Anandamide in Mesenteric Beds of Female Rats

Roxana Peroni; Tamara Abramoff; Isabel Neuman; Ernesto J. Podestá; Edda Adler-Graschinsky

In rat isolated mesenteric beds that were contracted with NA as an in vitro model of the vascular adrenergic hyperactivity that usually precedes the onset of primary hypertension, the oral administration (3 daily doses) of either 10 mg/kg genistein or 20 mg/kg daidzein potentiated the anandamide-induced reduction of contractility to NA in female but not in male rats. Oral treatment with phytoestrogens also restored the vascular effects of anandamide as well as the mesenteric content of calcitonin gene-related peptide (CGRP) that were reduced after ovariectomy. The enhancement of anandamide effects caused by phytoestrogens was prevented by the concomitant administration of the estrogen receptor antagonist fulvestrant (2.5 mg/kg, s.c., 3 daily doses). It is concluded that, in the vasculature of female rats, phytoestrogens produced an estrogen-receptor-dependent enhancement of the anandamide-vascular actions that involves the modulation of CGRP levels and appears to be relevant whenever an adrenergic hyperactivity occurs.


Biochimica et Biophysica Acta | 1999

Activation of a thioesterase specific for very-long-chain fatty acids by adrenergic agonists in perfused hearts.

Isabel Neuman; Constanza Lisdero; Carla V. Finkielstein; Paula Maloberti; Carlos F. Mendez; Juan José Poderoso; Ernesto J. Podestá

We have recently described an acyl-CoA thioesterase specific for very-long-chain fatty acids, named ARTISt, that regulates steroidogenesis through the release of arachidonic acid in adrenal zona fasciculata cells. In this paper we demonstrate the presence of the protein as a 43 kDa band and its mRNA in cardiac tissue. The activity of the protein was measured using an heterologous cell-free assay in which it is recombined with adrenal microsomes and mitochondria to activate mitochondrial steroidogenesis. Isoproterenol and phenylephrine activate the enzyme in a dose-dependent manner (10(-10)-10(-6) M). Both propranolol (10(-5) M) and prazosin (10(-5) M) block the action of isoproterenol and phenylephrine respectively. Antipeptide antibodies against the serine lipase motif of the protein and the Cys residue present in the catalytic domain also block the activity of the protein. Taken together, our results confirm the presence of ARTISt in heart and provide evidence for a catecholamine-activated regulatory pathway of the enzyme in that tissue.

Collaboration


Dive into the Isabel Neuman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Maloberti

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos F. Mendez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Pablo G. Mele

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Alejandra Duarte

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Cecilia Poderoso

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Cora Cymeryng

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Florencia Cano

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge