Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Pereira-Castro is active.

Publication


Featured researches published by Isabel Pereira-Castro.


Nucleus | 2014

Implications of polyadenylation in health and disease

Curinha A; Oliveira Braz S; Isabel Pereira-Castro; Andrea Cruz; Alexandra Moreira

Polyadenylation is the RNA processing step that completes the maturation of nearly all eukaryotic mRNAs. It is a two-step nuclear process that involves an endonucleolytic cleavage of the pre-mRNA at the 3′-end and the polymerization of a polyadenosine (polyA) tail, which is fundamental for mRNA stability, nuclear export and efficient translation during development. The core molecular machinery responsible for the definition of a polyA site includes several recognition, cleavage and polyadenylation factors that identify and act on a given polyA signal present in a pre-mRNA, usually an AAUAAA hexamer or similar sequence. This mechanism is tightly regulated by other cis-acting elements and trans-acting factors, and its misregulation can cause inefficient gene expression and may ultimately lead to disease. The majority of genes generate multiple mRNAs as a result of alternative polyadenylation in the 3′-untranslated region. The variable lengths of the 3′ untranslated regions created by alternative polyadenylation are a recognizable target for differential regulation and clearly affect the fate of the transcript, ultimately modulating the expression of the gene. Over the past few years, several studies have highlighted the importance of polyadenylation and alternative polyadenylation in gene expression and their impact in a variety of physiological conditions, as well as in several illnesses. Abnormalities in the 3′-end processing mechanisms thus represent a common feature among many oncological, immunological, neurological and hematological disorders, but slight imbalances can lead to the natural establishment of a specific cellular state. This review addresses the key steps of polyadenylation and alternative polyadenylation in different cellular conditions and diseases focusing on the molecular effectors that ensure a faultless pre-mRNA 3′ end formation.


Journal of Cellular Biochemistry | 2013

Characterization of human NLZ1/ZNF703 identifies conserved domains essential for proper subcellular localization and transcriptional repression

Isabel Pereira-Castro; Ângela M. Sousa Costa; Maria José Oliveira; Inês Barbosa; Ana Sofia Rocha; Luísa Azevedo; Luís Costa

NET family members have recently emerged as important players in the development of multiple structures, from the trachea of fly larvae to the vertebrate eye and human breast cancers. However, their mechanisms of action are still poorly understood, and we lack a detailed characterization of their functional domains, as well as gene expression patterns—particularly in adult mammals. Here, we present a characterization of human NLZ1/ZNF703 (NocA‐like zinc finger 1/Zinc finger 703), one of the two human NET family member genes. We show that the gene is ubiquitously expressed in adult human and mouse tissues, that three mRNA species with the same coding sequence are generated by alternative polyadenylation, and that the encoded protein contains six evolutionarily conserved domains, three of which are specific to NET proteins. Finally, we present functional evidence that these domains are necessary for proper subcellular distribution of and transcription repression by the NLZ1 protein, but not for its interaction with Groucho family co‐repressors. J. Cell. Biochem. 114: 120–133, 2012.


Oncotarget | 2016

Extensive regulation of nicotinate phosphoribosyltransferase (NAPRT) expression in human tissues and tumors.

Sara Duarte-Pereira; Isabel Pereira-Castro; Sarah S. Silva; Mariana Gonçalves Correia; Célia Neto; Luís Costa; António Amorim; Raquel M. Silva

Nicotinamide adenine dinucleotide (NAD) is a cofactor in redox reactions and a substrate for NAD-consuming enzymes, such as PARPs and sirtuins. As cancer cells have increased NAD requirements, the main NAD salvage enzymes in humans, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), are involved in the development of novel anti-cancer therapies. Knowledge of the expression patterns of both genes in tissues and tumors is critical for the use of nicotinic acid (NA) as cytoprotective in therapies using NAMPT inhibitors. Herein, we provide a comprehensive study of NAPRT and NAMPT expression across human tissues and tumor cell lines. We show that both genes are widely expressed under normal conditions and describe the occurrence of novel NAPRT transcripts. Also, we explore some of the NAPRT gene expression mechanisms. Our findings underline that the efficiency of NA in treatments with NAMPT inhibitors is dependent on the knowledge of the expression profiles and regulation of both NAMPT and NAPRT.


PLOS ONE | 2013

GRG5/AES Interacts with T-Cell Factor 4 (TCF4) and Downregulates Wnt Signaling in Human Cells and Zebrafish Embryos

Ângela M. Sousa Costa; Isabel Pereira-Castro; Elisabete Ricardo; Forrest Spencer; Shannon Fisher; Luís Costa

Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes’ roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development.


DNA and Cell Biology | 2012

Characterization of the human ornithine transcarbamylase 3' untranslated regulatory region.

Mónica Lopes-Marques; Isabel Pereira-Castro; António Amorim; Luísa Azevedo

Mutations in the untranslated regulatory regions of genes may result in abnormal gene expression or transcriptional regulation. In this study, we characterize the ornithine transcarbamylase (OTC) mRNA isoforms of the X-linked OTC gene involved in the urea formation in the liver. Our data revealed that two major transcripts (OTC-t1 and OTC-t2) are more highly expressed than any of the other isoforms in all the tissues analyzed, though a longer transcript (OTC-t3) was also isolated and characterized from the brain sample. The OTC-t2 sequence fully matches the OTC mRNA reference sequence (NM_000531.5). All three isoforms use a canonical AAUAAA hexamer that is predicted to fold into a hairpin secondary structure which might be exposed to the cleavage and polyadenylation specificity factor. In addition, we observed that the OTC-t1 and OTC-t2 transcripts display heterogeneity at the cleavage sites in a tissue-dependent manner. Taken together, our data demonstrate that several mRNA isoforms are transcribed from the OTC gene, thereby indicating a wide degree of variability in post-transcriptional regulation.


Scientific Reports | 2016

Evolution of the NET (NocA, Nlz, Elbow, TLP-1) protein family in metazoans: insights from expression data and phylogenetic analysis

Filipe Pereira; Sara Duarte-Pereira; Raquel M. Silva; Luís Costa; Isabel Pereira-Castro

The NET (for NocA, Nlz, Elbow, TLP-1) protein family is a group of conserved zinc finger proteins linked to embryonic development and recently associated with breast cancer. The members of this family act as transcriptional repressors interacting with both class I histone deacetylases and Groucho/TLE co-repressors. In Drosophila, the NET family members Elbow and NocA are vital for the development of tracheae, eyes, wings and legs, whereas in vertebrates ZNF703 and ZNF503 are important for the development of the nervous system, eyes and limbs. Despite the relevance of this protein family in embryogenesis and cancer, many aspects of its origin and evolution remain unknown. Here, we show that NET family members are present and expressed in multiple metazoan lineages, from cnidarians to vertebrates. We identified several protein domains conserved in all metazoan species or in specific taxonomic groups. Our phylogenetic analysis suggests that the NET family emerged in the last common ancestor of cnidarians and bilaterians and that several rounds of independent events of gene duplication occurred throughout evolution. Overall, we provide novel data on the expression and evolutionary history of the NET family that can be relevant to understanding its biological role in both normal conditions and disease.


Mitochondrial DNA | 2014

The mitochondrial genome of Prays oleae (Insecta: Lepidoptera: Praydidae)

Barbara van Asch; Imen Blibech; Isabel Pereira-Castro; Fernando Trindade Rei; Luís Teixeira da Costa

Abstract Prays oleae is one of the most important olive tree pests and a species of interest in evolutionary studies, as it belongs to one of the oldest extant superfamilies of Ditrysian Lepidoptera. We determined its mitogenome sequence, and found it has common features for Lepidoptera, e.g. an >80% A + T content, an apparent CGA start codon for COX1 and an ATAGA(T)n motif in the control region, which also contains several copies of a 163-164 bp repeat. Importantly, the mitogenome displays the Met-Ile-Gln tRNA gene order typical of Ditrysia, consistent with the hypothesis that this is a synapomorphy of that clade.


Human Genetics | 2012

Successful COG8 and PDF overlap is mediated by alterations in splicing and polyadenylation signals

Isabel Pereira-Castro; Rita Quental; Luís Costa; António Amorim; Luísa Azevedo

Although gene-free areas compose the great majority of eukaryotic genomes, a significant fraction of genes overlaps, i.e., unique nucleotide sequences are part of more than one transcription unit. In this work, the evolutionary history and origin of a same-strand gene overlap is dissected through the analysis of COG8 (component of oligomeric Golgi complex 8) and PDF (peptide deformylase). Comparative genomic surveys reveal that the relative locations of these two genes have been changing over the last 445 million years from distinct chromosomal locations in fish to overlapping in rodents and primates, indicating that the overlap between these genes precedes their divergence. The overlap between the two genes was initiated by the gain of a novel splice donor site between the COG8 stop codon and PDF initiation codon. Splicing is accomplished by the use of the PDF acceptor, leading COG8 to share the 3′end with PDF. In primates, loss of the ancestral polyadenylation signal for COG8 makes the overlap between COG8 and PDF mandatory, while in mouse and rat concurrent overlapping and non-overlapping Cog8 transcripts exist. Altogether, we demonstrate that the origin, evolution and preservation of the COG8/PDF same-strand overlap follow similar mechanistic steps as those documented for antisense overlaps where gain and/or loss of splice sites and polyadenylation signals seems to drive the process.


Blood | 2017

Thymic epithelial cells require p53 to support their long-term function in thymopoiesis in mice

Pedro Miguel Rodrigues; Ana R. Ribeiro; Chiara Perrod; Jonathan J. M. Landry; Leonor Araújo; Isabel Pereira-Castro; Vladimir Benes; Alexandra Moreira; Helena Xavier-Ferreira; Catarina Meireles; Nuno L. Alves

Thymic epithelial cells (TECs) provide crucial microenvironments for T-cell development and tolerance induction. As the regular function of the thymus declines with age, it is of fundamental and clinical relevance to decipher new determinants that control TEC homeostasis in vivo. Beyond its recognized tumor suppressive function, p53 controls several immunoregulatory pathways. To study the cell-autonomous role of p53 in thymic epithelium functioning, we developed and analyzed mice with conditional inactivation of Trp53 in TECs (p53cKO). We report that loss of p53 primarily disrupts the integrity of medullary TEC (mTEC) niche, a defect that spreads to the adult cortical TEC compartment. Mechanistically, we found that p53 controls specific and broad programs of mTEC differentiation. Apart from restraining the expression and responsiveness of the receptor activator of NF-κB (RANK), which is central for mTEC differentiation, deficiency of p53 in TECs altered multiple functional modules of the mTEC transcriptome, including tissue-restricted antigen expression. As a result, p53cKO mice presented premature defects in mTEC-dependent regulatory T-cell differentiation and thymocyte maturation, which progressed to a failure in regular and regenerative thymopoiesis and peripheral T-cell homeostasis in the adulthood. Lastly, peripheral signs of altered immunological tolerance unfold in mutant mice and in immunodeficient mice that received p53cKO-derived thymocytes. Our findings position p53 as a novel molecular determinant of thymic epithelium function throughout life.


PLOS ONE | 2015

Marked Genetic Differentiation between Western Iberian and Italic Populations of the Olive Fly: Southern France as an Intermediate Area

Barbara van Asch; Isabel Pereira-Castro; Fernando Trindade Rei; Luís Teixeira da Costa

The olive fly, Bactrocera oleae, is the most important pest affecting the olive industry, to which it is estimated to cause average annual losses in excess of one billion dollars. As with other insects with a wide distribution, it is generally accepted that the understanding of B. oleae population structure and dynamics is fundamental for the design and implementation of effective monitoring and control strategies. However, and despite important advances in the past decade, a clear picture of B. oleaes population structure is still lacking. In the Mediterranean basin, where more than 95% of olive production is concentrated, evidence from several studies suggests the existence of three distinct sub-populations, but the geographical limits of their distributions, and the level of interpenetration and gene flow among them remain ill-characterized. Here we use mitochondrial haplotype analysis to show that one of the Mediterranean mitochondrial lineages displays geographically correlated substructure and demonstrate that Italic populations, though markedly distinct from their Iberian and Levantine counterparts are more diverse than previously described. Finally, we show that this distinction does not result from extant hypothetical geographic limits imposed by the Alps or the Pyrenees nor, more generally, does it result from any sharp boundary, as intermixing is observed in a broad area, albeit at variable levels. Instead, Bayesian phylogeographic analysis suggests the interplay between isolation-mediated differentiation during glacial periods and bi-directional dispersal and population intermixing in the interglacials has played a major role in shaping current olive fly population structure.

Collaboration


Dive into the Isabel Pereira-Castro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Moreira

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Trindade Rei

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge