Isabel Pinilla
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isabel Pinilla.
Stem Cells | 2011
Jason S. Meyer; Sara E. Howden; Kyle Wallace; Amelia D. Verhoeven; Lynda S. Wright; Elizabeth E. Capowski; Isabel Pinilla; Jessica M. Martin; Shulan Tian; Ron Stewart; Bikash R. Pattnaik; James A. Thomson; David M. Gamm
Differentiation methods for human induced pluripotent stem cells (hiPSCs) typically yield progeny from multiple tissue lineages, limiting their use for drug testing and autologous cell transplantation. In particular, early retina and forebrain derivatives often intermingle in pluripotent stem cell cultures, owing to their shared ancestry and tightly coupled development. Here, we demonstrate that three‐dimensional populations of retinal progenitor cells (RPCs) can be isolated from early forebrain populations in both human embryonic stem cell and hiPSC cultures, providing a valuable tool for developmental, functional, and translational studies. Using our established protocol, we identified a transient population of optic vesicle (OV)‐like structures that arose during a time period appropriate for normal human retinogenesis. These structures were independently cultured and analyzed to confirm their multipotent RPC status and capacity to produce physiologically responsive retinal cell types, including photoreceptors and retinal pigment epithelium (RPE). We then applied this method to hiPSCs derived from a patient with gyrate atrophy, a retinal degenerative disease affecting the RPE. RPE generated from these hiPSCs exhibited a disease‐specific functional defect that could be corrected either by pharmacological means or following targeted gene repair. The production of OV‐like populations from human pluripotent stem cells should facilitate the study of human retinal development and disease and advance the use of hiPSCs in personalized medicine. STEM CELLS 2011;29:1206‐1218
Neuroscience | 2004
Nicolás Cuenca; Isabel Pinilla; Yves Sauve; Bin Lu; Shaomei Wang; Raymond D. Lund
We have used the P23H line 1 homozygous albino rat to study how progressive photoreceptor degeneration affects rod and cone relay pathways. We examined P23H retinas at different stages of degeneration by confocal microscopy of immunostained sections and electroretinogram (ERG) recordings. By 21 days of age in the P23H rat retina, there is already substantial loss of rods and reduction in rod bipolar dendrites along with reduction of metabotropic glutamate receptor 6 (mGluR6) and rod-associated bassoon staining. The cone pathway is relatively unaffected. By 150 days, when rods are absent from much of the retina, some rod bipolars remain and dendrites of rod and cone bipolar cells form synaptic complexes associated with cones and horizontal cell processes. These complexes include foci of mGluR6 and bassoon staining; they develop further by 270 days of age. Over the course of degeneration, beginning at 21 days, bipolar axon terminals atrophy and the inner retina undergoes further changes including a reduced and disorganized AII amacrine cell population and thinning of the inner plexiform layer. Electroretinogram (ERG) results at 23 days show reductions in a-wave amplitude, in rod and cone-associated b-waves (using a double flash paradigm) and in the amplitude of oscillatory potentials (OPs). By 38 days, rod scotopic a-wave responses and OPs are lost. B-wave amplitudes decline until 150 days, at which point they are purely cone-driven and remain stable up to 250 days. The results show that during the course of photoreceptor loss in the P23H rat, there are progressive degenerative changes, particularly in the rod relay pathway, and these are reflected in the changing ERG response patterns. Later reactive changes involving condensation of cone terminals and neurotransmitter receptors associated with rod and cone bipolar dendrites and with horizontal cell processes suggest that at this stage, there are likely to be complex changes in the relay of sensory information through the retina.
Progress in Retinal and Eye Research | 2014
Nicolás Cuenca; Laura Fernández-Sánchez; Laura Campello; Victoria Maneu; Pedro de la Villa; Pedro Lax; Isabel Pinilla
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
European Journal of Neuroscience | 2005
Nicolás Cuenca; Isabel Pinilla; Yves Sauve; Raymond D. Lund
The Royal College of Surgeons (RCS) rat has a retinal pigment epithelial cell defect that causes progressive loss of photoreceptors. Although it is extensively used in retinal degeneration and repair studies, how photoreceptor degeneration affects retinal circuitry has not been fully explored. This study examined the changes in synaptic connectivity between photoreceptors and their target cells using immunocytochemistry and correlated these changes with retinal function using the electroretinogram (ERG). Immunostaining with bassoon and synaptophysin (as presynaptic markers) and metabotropic glutamate receptor (mGluR6, a postsynaptic marker for ON‐bipolar dendrites) was already impaired at postnatal day (P) 21 and progressively lost with infrequent pairing of presynaptic and postsynaptic elements at P60. By P90 to P120, staining became increasingly patchy and was eventually restricted to sparsely and irregularly distributed foci in which the normal pairing of presynaptic and postsynaptic markers was lost. ERG results showed that mixed scotopic a‐waves and b‐waves were already reduced by P21 but not oscillatory potentials. While cone‐driven responses (photopic b‐wave) reached normal levels at P30, they were impaired by P60 but could still be recorded at P120, although with reduced amplitude; rod responses never reached normal amplitudes. Thus, only cone‐driven activity attained normal levels, but declined rapidly thereafter. In conclusion, the synaptic markers associated with photoreceptors and processes of bipolar and horizontal cells show abnormalities prior to significant photoreceptor loss. These changes are paralleled with the deterioration of specific aspects of ERG responsiveness with age. Besides providing information on the effects of photoreceptor dysfunction and loss on connection patterns in the retina, the work addresses the more general issue of how disorder of input neurons affects downstream circuitry.
Experimental Eye Research | 2010
Diego García-Ayuso; Manuel Salinas-Navarro; Marta Agudo; Nicolás Cuenca; Isabel Pinilla; Manuel Vidal-Sanz; María Paz Villegas-Pérez
The P23H-1 rat strain carries a rhodopsin mutation frequently found in retinitis pigmentosa patients. We investigated the progressive degeneration of the inner retina in this strain, focussing on retinal ganglion cells (RGCs) fate. Our data show that photoreceptor death commences in the ventral retina, spreading to the whole retina as the rat ages. Quantification of the total number of RGCs identified by Fluorogold tracing and Brn3a expression, disclosed that the population of RGCs in young P23H rats is significantly smaller than in its homologous SD strain. In the mutant strain, there is also RGC loss with age: RGCs show their first symptoms of degeneration at P180, as revealed by an abnormal expression of cytoskeletal proteins which, at P365, translates into a significant loss of RGCs, that may ultimately be caused by displaced inner retinal vessels that drag and strangulate their axons. RGC axonal compression begins also in the ventral retina and spreads from there causing RGC loss through the whole retinal surface. These decaying processes are common to several models of photoreceptor loss, but show some differences between inherited and light-induced photoreceptor degeneration and should therefore be studied to a better understanding of photoreceptor degeneration and when developing therapies for these diseases.
Experimental Eye Research | 2010
Nicolás Cuenca; Isabel Pinilla; Laura Fernández-Sánchez; Manuel Salinas-Navarro; Luis Alarcón-Martínez; Marcelino Avilés-Trigueros; Pedro de la Villa; Jaime Miralles de Imperial; María Paz Villegas-Pérez; Manuel Vidal-Sanz
In adult albino mice the effects of increased intraocular pressure on the outer retina and its circuitry was investigated at intervals ranging 3-14 weeks. Ocular hypertension (OHT) was induced by cauterizing the vessels draining the anterior part of the mice eye, as recently reported (Salinas-Navarro et al., 2009a). Electroretinographic (ERG) responses were recorded simultaneously from both eyes and compared each other prior to and at different survival intervals of 2, 8 or 12 weeks after lasering. Animals were processed at 3, 9 or 14 weeks after lasering, and radial sections were obtained in the cryostat and further processed for immunocytochemistry using antibodies against recoverin, gamma-transducin, Protein Kinase C-alpha (PKC-alpha), calbindin or synaptophysin. The synaptic ribbons were identified using an antibody against the protein bassoon, which labels photoreceptor ribbons and nuclei were identified using TO-PRO. Laser photocoagulation of the perilimbar and episcleral veins of the left eye resulted in an increase in mean intraocular pressure to approximately over twice its baseline by 24 h that was maintained for approximately five days reaching basal levels by 1 week. ERG recordings from the different groups of mice showed their a-, b-wave and scotopic threshold response (STR) amplitudes, when compared to their contralateral fellow eye, reduced to 62%, 52% and 23% at 12 weeks after lasering. Three weeks after lasering, immunostaining with recoverin and transducin antibodies could not document any changes in the outer nuclear layer (ONL) but both ON-rod bipolar and horizontal cells had lost their dendritic processes in the outer plexiform layer (OPL). Sprouting of horizontal and bipolar cell processes were observed into the ONL. Fourteen weeks after lasering, protein kinase-C antibodies showed morphologic changes of ON-rod bipolar cells and calbindin staining showed abnormal horizontal cells and a loss of their relationship with their presynaptic input. Moreover, at this time, quantitative studies indicate significant diminutions in the number of photoreceptor synaptic ribbons/100 microm, and in the thickness of the outer nuclear and plexiform layer, when compared to their fellow eyes. Increased intraocular pressure in Swiss mice results in permanent alterations of their full field ERG responses and in changes of the inner and outer retinal circuitries.
Investigative Ophthalmology & Visual Science | 2011
Laura Fernández-Sánchez; Pedro Lax; Isabel Pinilla; José Martín-Nieto; Nicolás Cuenca
PURPOSE To evaluate the preventive effect of tauroursodeoxycholic acid (TUDCA) on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). METHODS P23H line-3 rats were injected with TUDCA once a week from postnatal day (P)21 to P120, in parallel with vehicle-administered controls. At P120, functional activity of the retina was evaluated by electroretinographic (ERG) recording. The effects of TUDCA on the number, morphology, integrity, and synaptic connectivity of retinal cells were characterized by immunofluorescence confocal microscopy. RESULTS The amplitude of ERG a- and b-waves was significantly higher in TUDCA-treated animals under both scotopic and photopic conditions than in control animals. In the central area of the retina, TUDCA-treated P23H rats showed threefold more photoreceptors than control animals. The number of TUNEL-positive cells was significantly smaller in TUDCA-treated rats, in which photoreceptor morphology was preserved. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in TUDCA-treated P23H rats. Furthermore, in TUDCA-treated rat retinas, the number of both rod bipolar and horizontal cell bodies, as well as the density of their synaptic terminals in the outer plexiform layer, was greater than in control rats. CONCLUSIONS TUDCA treatment was capable of preserving cone and rod structure and function, together with their contacts with their postsynaptic neurons. The neuroprotective effects of TUDCA make this compound potentially useful for delaying retinal degeneration in RP.
Acta Ophthalmologica | 2011
Elena García-Martín; Isabel Pinilla; Miriam Idoipe; Isabel Fuertes; V. Pueyo
Acta Ophthalmol. 2011: 89: e23–e29
Investigative Ophthalmology & Visual Science | 2008
David Gamm; J. Nicholas Melvan; R. L. Shearer; Isabel Pinilla; Grzegorz Sabat; Clive N. Svendsen; Lynda S. Wright
PURPOSE Established techniques for culturing primary human retinal pigment epithelial (RPE) cells have facilitated the laboratory investigation of this multipurpose retinal cell layer. However, most culture methods involve the use of animal serum to establish and maintain RPE monolayers, which can complicate efforts to define and study factors involved in the maturation and function of these cells. Therefore, this study was conducted to develop a simple, serum-free system to propagate and sustain human RPE in vitro. METHODS RPE was dissected from human prenatal donor eyes and cultured in serum-free defined medium containing the commercially formulated supplement B27 or N2. Cultures were grown initially as adherent tissue sections or suspended spherical aggregates and later expanded and maintained as monolayers. PCR, Western blot analysis, and immunocytochemistry were used to monitor gene and protein expression in established cultures, followed by examination of secretory products in RPE conditioned medium by ELISA and mass spectrometric analysis. RESULTS In medium supplemented with B27, but not N2, RPE could be expanded up to 40,000-fold over six passages and maintained in culture for more than 1 year. In long-term cultures, typical cellular morphology and pigmentation were observed, along with expression of characteristic RPE markers. RPE monolayers also retained proper apical-basal orientation and secreted multiple factors implicated in the maintenance of photoreceptor health and the pathogenesis of age-related macular degeneration. CONCLUSIONS Monolayer cultures of human prenatal RPE can be grown and maintained long term in the total absence of serum and still retain the phenotype, gene and protein expression profile, and secretory capacity exhibited by mature RPE cells.
Investigative Ophthalmology & Visual Science | 2011
Elena García-Martín; V. Pueyo; Isabel Pinilla; J.R. Ara; Jesús Martín; Javier Fernández
PURPOSE To evaluate the ability of Fourier-domain (FD) optical coherence tomography (OCT) to detect retinal nerve fiber layer (RNFL) atrophy in multiple sclerosis (MS) patients. To test the intrasession reproducibility of RNFL thickness measurements in MS and healthy subjects using Cirrus (Carl Zeiss Meditec, Dublin, CA) and Spectralis (Heidelberg Engineering, Heidelberg, Germany) OCT. METHODS Two hundred twenty-two eyes of 111 subjects (50 MS patients and 61 healthy subjects) underwent three 360° circular scans centered on the optic disc by the same experienced examiner using the Cirrus and Spectralis OCT instruments. Differences between healthy and MS eyes were compared. The relationship between average thicknesses with each OCT was evaluated. Repeatability was studied by intraclass correlation coefficients and coefficients of variation (COV). RESULTS RNFL atrophy was detected in the MS eyes for all OCT parameters (P < 0.05). Cirrus and Spectralis showed an RNFL average thickness of 99.4 and 102.5 μm, respectively, in healthy subjects, and 86.0 and 90.4 μm in the MS eyes. RNFL average thickness in the MS eyes determined by both OCTs correlated (r = 0.812; P < 0.001), but were significantly different (P < 0.001). Reproducibility was good. In the MS eyes, Cirrus measurements showed a mean COV of 5.85%, Spectralis 6.80%, and Spectralis with a progression feature 4.16%. Intraclass correlation coefficients were higher than 0.840. RNFL average thickness correlated with disease duration and an optic neuritis antecedent. CONCLUSIONS There are significant differences in RNFL thickness measurements between Cirrus and Spectralis despite a high correlation of measurement between the two instruments. Fourier-domain OCT can be considered a valid device for detecting RNFL atrophy in MS patients.