Isabel S. Dennahy
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isabel S. Dennahy.
Journal of Trauma-injury Infection and Critical Care | 2017
Vahagn C. Nikolian; Patrick E. Georgoff; Manjunath P. Pai; Isabel S. Dennahy; Kiril Chtraklin; Hassan Eidy; Mohamed H. Ghandour; Yanyan Han; Ashok Srinivasan; Yongqing Li; Hasan B. Alam
BACKGROUND We have previously shown that treatment with valproic acid (VPA) decreases brain lesion size in swine models of traumatic brain injury (TBI) and controlled hemorrhage. To translate this treatment into clinical practice, validation of drug efficacy and evaluation of pharmacologic properties in clinically realistic models of injury are necessary. In this study, we evaluate neurologic outcomes and perform pharmacokinetic analysis of a single dose of VPA in swine subjected to TBI, hemorrhagic shock, and visceral hemorrhage. METHODS Yorkshire swine (n = 5/cohort) were subjected to TBI, hemorrhagic shock, and polytrauma (liver and spleen injury, rib fracture, and rectus abdominis crush). Animals remained in hypovolemic shock for 2 hours before resuscitation with isotonic sodium chloride solution (ISCS; volume = 3× hemorrhage) or ISCS + VPA (150 mg/kg). Neurologic severity scores were assessed daily for 30 days, and brain lesion size was measured via magnetic resonance imaging on postinjury days (PID) 3 and 10. Serum samples were collected for pharmacokinetic analysis. RESULTS Shock severity and response to resuscitation were similar in both groups. Valproic acid–treated animals demonstrated significantly less neurologic impairment between PID 1 to 5 and smaller brain lesions on PID 3 (mean lesion size ± SEM, mm3: ISCS = 4,956 ± 1,511 versus ISCS + VPA = 828 ± 279; p = 0.047). No significant difference in lesion size was identified between groups at PID 10 and all animals recovered to baseline neurologic function during the 30-day observation period. Animals treated with VPA had faster neurocognitive recovery (days to initiation of testing, mean ± SD: ISCS = 6.2 ± 1.6 vs ISCS + VPA = 3.6 ± 1.5; p = 0.002; days to task mastery: ISCS = 7.0 ± 1.0 vs ISCS + VPA = 4.8 ± 0.5; p = 0.03). The mean ± SD maximum VPA concentrations, area under the curve, and half-life were 145 ± 38.2 mg/L, 616 ± 150 hour·mg/L, and 1.70 ± 0.12 hours. CONCLUSIONS In swine subjected to TBI, hemorrhagic shock, and polytrauma, VPA treatment is safe, decreases brain lesion size, and reduces neurologic injury compared to resuscitation with ISCS alone. These benefits are achieved at clinically translatable serum concentrations of VPA. LEVEL OF EVIDENCE Therapeutic (preclinical study).
Journal of Neurotrauma | 2018
Aaron M. Williams; Isabel S. Dennahy; Umar F. Bhatti; Ihab Halaweish; Ye Xiong; Panpan Chang; Vahagn C. Nikolian; Kiril Chtraklin; Jordana Brown; Yanlu Zhang; Zheng Gang Zhang; Michael Chopp; Benjamin Buller; Hasan B. Alam
Combined traumatic brain injury (TBI) and hemorrhagic shock (HS) remains a leading cause of preventable death worldwide. Mesenchymal stem cell-derived exosomes have demonstrated promise in small animal models of neurologic injury. To investigate the effects of exosome treatment in a clinically realistic large animal model, Yorkshire swine underwent TBI and HS. Animals were maintained in shock for 2 h before resuscitation with normal saline (NS). Animals were then resuscitated either with NS (3 × volume of shed blood) or with the same volume of NS with delayed exosome administration (1 × 1013 particles/4 mL) (n = 5/cohort). Exosomes were administered 9 h post-injury, and on post-injury days (PID) 1, 5, 9, and 13. Neurologic severity scores (NSS) were assessed for 30 days, and neurocognitive functions were objectively measured. Exosome-treated animals had significantly lower NSS (p < 0.05) during the first five days of recovery. Exosome-treated animals also had a significantly shorter time to complete neurologic recovery (NSS = 0) compared with animals given NS alone (days to recovery: NS = 16.8 ± 10.6; NS + exosomes = 5.6 ± 2.8; p = 0.03). Animals treated with exosomes initiated neurocognitive testing earlier (days to initiation: NS = 9.6 ± 0.5 vs. NS + exosomes = 4.2 ± 0.8; p = 0.008); however, no difference was seen in time to mastery of tasks. In conclusion, treatment with exosomes attenuates the severity of neurologic injury and allows for faster neurologic recovery in a clinically realistic large animal model of TBI and HS.
Critical Care Medicine | 2018
Vahagn C. Nikolian; Simone E. Dekker; Ted Bambakidis; Gerald A. Higgins; Isabel S. Dennahy; Patrick E. Georgoff; Aaron M. Williams; Anuska V. Andjelkovic; Hasan B. Alam
Objective: Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Design: Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Subjects: Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Interventions: Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Measurements and Main Results: Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Conclusions: Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.
Journal of Visualized Experiments | 2018
Aaron M. Williams; Umar F. Bhatti; Isabel S. Dennahy; Kiril Chtraklin; Panpan Chang; Nathan J. Graham; Basil M. Baccouche; Shalini Roy; Mohammed Harajli; Jing Zhou; Vahagn C. Nikolian; Qiufang Deng; Yuzi Tian; Baoling Liu; Yongqing Li; Gregory Hays; Julia Hays; Hasan B. Alam
Hemorrhage remains the leading cause of preventable deaths in trauma. Endovascular management of non-compressible torso hemorrhage has been at the forefront of trauma care in recent years. Since complete aortic occlusion presents serious concerns, the concept of partial aortic occlusion has gained a growing attention. Here, we present a large animal model of hemorrhagic shock to investigate the effects of a novel partial aortic balloon occlusion catheter and compare it with a catheter that works on the principles of complete aortic occlusion. Swine are anesthetized and instrumented in order to conduct controlled fixed-volume hemorrhage, and hemodynamic and physiological parameters are monitored. Following hemorrhage, aortic balloon occlusion catheters are inserted and inflated in the supraceliac aorta for 60 min, during which the animals receive whole-blood resuscitation as 20% of the total blood volume (TBV). Following balloon deflation, the animals are monitored in a critical care setting for 4 h, during which they receive fluid resuscitation and vasopressors as needed. The partial aortic balloon occlusion demonstrated improved distal mean arterial pressures (MAPs) during the balloon inflation, decreased markers of ischemia, and decreased fluid resuscitation and vasopressor use. As swine physiology and homeostatic responses following hemorrhage have been well-documented and are like those in humans, a swine hemorrhagic shock model can be used to test various treatment strategies. In addition to treating hemorrhage, aortic balloon occlusion catheters have become popular for their role in cardiac arrest, cardiac and vascular surgery, and other high-risk elective surgical procedures.
Journal of Neurotrauma | 2018
Frederick K. Korley; Vahagn C. Nikolian; Aaron M. Williams; Isabel S. Dennahy; Michael Weykamp; Hasan B. Alam
The primary aim of this study was to examine the effects of valproic acid (VPA) treatment on serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NF-L) levels. To achieve this aim, we obtained serum samples from: 1) 10 Yorkshire swine subjected to controlled cortical impact traumatic brain injury (CCI TBI) + polytrauma and randomized to receive either normal saline (NS) + VPA (n = 5) or NS alone (n = 5) and 2) five additional swine subjected to CCI TBI without polytrauma and treated with VPA. GFAP and NF-L levels were measured in samples obtained from baseline until 10 days post-injury using a digital immunoassay from Quanterix Corporation. We found that elevated GFAP and NF-L levels were first detected at 2 h post-injury; and peaked at 24 h and 72 h respectively. GFAP levels returned to baseline levels by Day 10, while NF-L remained elevated at Day 10. In TBI + polytrauma swine, the magnitude and duration of biomarker elevation, quantified by the area under the biomarker-concentration-versus-time curve during the first 10 days (AUC0-10days), was higher in the NS group, compared with the VPA group. For GFAP, the AUC0-10days was 45,535 (IQR: 35,741-105,711) and 22,837 (IQR: 8,082-46,627) for the NS and NS+VPA groups, respectively. For NF-L, the AUC0-10days was 43,073 (IQR: 18,739-120,794) and 4,475 (2,868-11,157) for the NS and NS+VPA groups, respectively. Twenty-four hour GFAP and NF-L levels had the strongest correlation with lesion size and time to normalization of behavior. Accordingly, we conclude that treatment with VPA results in significantly lower serum GFAP and NF-L levels. The time-point at which GFAP and NF-L levels have the strongest correlation with outcome is 24 h post-injury.Abstract The primary aim of this study was to examine the effects of valproic acid (VPA) treatment on serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NF-L) levels. To achieve this aim, we obtained serum samples from: 1) 10 Yorkshire swine subjected to controlled cortical impact traumatic brain injury (CCI TBI) + polytrauma and randomized to receive either normal saline (NS) + VPA (n = 5) or NS alone (n = 5) and 2) five additional swine subjected to CCI TBI without polytrauma and treated with VPA. GFAP and NF-L levels were measured in samples obtained from baseline until 10 days post-injury using a digital immunoassay from Quanterix Corporation. We found that elevated GFAP and NF-L levels were first detected at 2 h post-injury; and peaked at 24 h and 72 h respectively. GFAP levels returned to baseline levels by Day 10, while NF-L remained elevated at Day 10. In TBI + polytrauma swine, the magnitude and duration of biomarker elevation, quantified by the area under the biomarker-c...
Journal of Neurotrauma | 2018
Frederick K. Korley; Vahagn C. Nikolian; Aaron M. Williams; Isabel S. Dennahy; Michael Weykamp; Hasan B. Alam
The primary aim of this study was to examine the effects of valproic acid (VPA) treatment on serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NF-L) levels. To achieve this aim, we obtained serum samples from: 1) 10 Yorkshire swine subjected to controlled cortical impact traumatic brain injury (CCI TBI) + polytrauma and randomized to receive either normal saline (NS) + VPA (n = 5) or NS alone (n = 5) and 2) five additional swine subjected to CCI TBI without polytrauma and treated with VPA. GFAP and NF-L levels were measured in samples obtained from baseline until 10 days post-injury using a digital immunoassay from Quanterix Corporation. We found that elevated GFAP and NF-L levels were first detected at 2 h post-injury; and peaked at 24 h and 72 h respectively. GFAP levels returned to baseline levels by Day 10, while NF-L remained elevated at Day 10. In TBI + polytrauma swine, the magnitude and duration of biomarker elevation, quantified by the area under the biomarker-concentration-versus-time curve during the first 10 days (AUC0-10days), was higher in the NS group, compared with the VPA group. For GFAP, the AUC0-10days was 45,535 (IQR: 35,741-105,711) and 22,837 (IQR: 8,082-46,627) for the NS and NS+VPA groups, respectively. For NF-L, the AUC0-10days was 43,073 (IQR: 18,739-120,794) and 4,475 (2,868-11,157) for the NS and NS+VPA groups, respectively. Twenty-four hour GFAP and NF-L levels had the strongest correlation with lesion size and time to normalization of behavior. Accordingly, we conclude that treatment with VPA results in significantly lower serum GFAP and NF-L levels. The time-point at which GFAP and NF-L levels have the strongest correlation with outcome is 24 h post-injury.Abstract The primary aim of this study was to examine the effects of valproic acid (VPA) treatment on serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NF-L) levels. To achieve this aim, we obtained serum samples from: 1) 10 Yorkshire swine subjected to controlled cortical impact traumatic brain injury (CCI TBI) + polytrauma and randomized to receive either normal saline (NS) + VPA (n = 5) or NS alone (n = 5) and 2) five additional swine subjected to CCI TBI without polytrauma and treated with VPA. GFAP and NF-L levels were measured in samples obtained from baseline until 10 days post-injury using a digital immunoassay from Quanterix Corporation. We found that elevated GFAP and NF-L levels were first detected at 2 h post-injury; and peaked at 24 h and 72 h respectively. GFAP levels returned to baseline levels by Day 10, while NF-L remained elevated at Day 10. In TBI + polytrauma swine, the magnitude and duration of biomarker elevation, quantified by the area under the biomarker-c...
Journal of Trauma-injury Infection and Critical Care | 2018
Panpan Chang; Michael Weykamp; Isabel S. Dennahy; Aaron M. Williams; Umar F. Bhatti; Baoling Liu; Vahagn C. Nikolian; Yongqing Li; Hasan B. Alam
Journal of The American College of Surgeons | 2018
Panpan Chang; Aaron M. Williams; Isabel S. Dennahy; Umar F. Bhatti; Baoling Liu; Vahagn C. Nikolian; Yongqing Li; Hasan B. Alam
Journal of Surgical Research | 2018
Michael Weykamp; Vahagn C. Nikolian; Isabel S. Dennahy; Gerald A. Higgins; Patrick E. Georgoff; Henriette A. Remmer; Mohamed H. Ghandour; Hasan B. Alam
Inflammation | 2018
Qiufang Deng; Ting Zhao; Baihong Pan; Isabel S. Dennahy; Xiuzhen Duan; Aaron M. Williams; Baoling Liu; Nan Lin; Umar F. Bhatti; Eric Chen; Hasan B. Alam; Yongqing Li