Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabel Veloso Alves Pereira is active.

Publication


Featured researches published by Isabel Veloso Alves Pereira.


PLOS ONE | 2015

Primary Biliary Acids Inhibit Hepatitis D Virus (HDV) Entry into Human Hepatoma Cells Expressing the Sodium-Taurocholate Cotransporting Polypeptide (NTCP)

Isabel Veloso Alves Pereira; Bettina Buchmann; Lisa Sandmann; Kathrin Sprinzl; Verena Schlaphoff; Katinka Döhner; Florian W. R. Vondran; Christoph Sarrazin; Michael P. Manns; Claudia Pinto Marques Souza de Oliveira; Beate Sodeik; Sandra Ciesek; Thomas von Hahn

Background The sodium-taurocholate cotransporting polypeptide (NTCP) is both a key bile acid (BA) transporter mediating uptake of BA into hepatocytes and an essential receptor for hepatitis B virus (HBV) and hepatitis D virus (HDV). In this study we aimed to characterize to what extent and through what mechanism BA affect HDV cell entry. Methods HuH-7 cells stably expressing NTCP (HuH-7/NTCP) and primary human hepatocytes (PHH) were infected with in vitro generated HDV particles. Infectivity in the absence or presence of compounds was assessed using immunofluorescence staining for HDV antigen, standard 50% tissue culture infectious dose (TCID50) assays and quantitative PCR. Results Addition of primary conjugated and unconjugated BA resulted in a dose dependent reduction in the number of infected cells while secondary, tertiary and synthetic BA had a lesser effect. This effect was observed both in HuH-7/NTCP and in PHH. Other replication cycle steps such as replication and particle assembly and release were unaffected. Moreover, inhibitory BA competed with a fragment from the large HBV envelope protein for binding to NTCP-expressing cells. Conversely, the sodium/BA-cotransporter function of NTCP seemed not to be required for HDV infection since infection was similar in the presence or absence of a sodium gradient across the plasma membrane. When chenodeoxycolic acid (15 mg per kg body weight) was administered to three chronically HDV infected individuals over a period of up to 16 days there was no change in serum HDV RNA. Conclusions Primary BA inhibit NTCP-mediated HDV entry into hepatocytes suggesting that modulation of the BA pool may affect HDV infection of hepatocytes.


Biochimica et Biophysica Acta | 2016

Involvement of connexin43 in acetaminophen-induced liver injury

M. Maes; Mitchell R. McGill; Tereza Cristina da Silva; Chloé Abels; Margitta Lebofsky; Cintia Maria Monteiro de Araújo; Taynã Tiburcio; Isabel Veloso Alves Pereira; Joost Willebrords; Sara Crespo Yanguas; Anwar Farhood; Alain Beschin; Jo A. Van Ginderachter; M.L. Dagli; Hartmut Jaeschke; Bruno Cogliati; Mathieu Vinken

BACKGROUND AND AIMS Being goalkeepers of liver homeostasis, gap junctions are also involved in hepatotoxicity. However, their role in this process is ambiguous, as gap junctions can act as both targets and effectors of liver toxicity. This particularly holds true for drug-induced liver insults. In the present study, the involvement of connexin26, connexin32 and connexin43, the building blocks of liver gap junctions, was investigated in acetaminophen-induced hepatotoxicity. METHODS C57BL/6 mice were overdosed with 300mg/kg body weight acetaminophen followed by analysis of the expression and localization of connexins as well as monitoring of hepatic gap junction functionality. Furthermore, acetaminophen-induced liver injury was compared between mice genetically deficient in connexin43 and wild type littermates. Evaluation of the toxicological response was based on a set of clinically relevant parameters, including protein adduct formation, measurement of alanine aminotransferase activity, cytokines and glutathione. RESULTS It was found that gap junction communication deteriorates upon acetaminophen intoxication in wild type mice, which is associated with a switch in mRNA and protein production from connexin32 and connexin26 to connexin43. The upregulation of connexin43 expression is due, at least in part, to de novo production by hepatocytes. Connexin43-deficient animals tended to show increased liver cell death, inflammation and oxidative stress in comparison with wild type counterparts. CONCLUSION These results suggest that hepatic connexin43-based signaling may protect against acetaminophen-induced liver toxicity.


Drug Design Development and Therapy | 2013

S-nitroso-N-acetylcysteine attenuates liver fibrosis in experimental nonalcoholic steatohepatitis

Daniel Ferraz de Campos Mazo; Marcelo Ganzarolli de Oliveira; Isabel Veloso Alves Pereira; Bruno Cogliati; J.T. Stefano; Gabriela Freitas Pereira de Souza; Fabiola Rabelo; Fabiana Roberto Lima; Venancio Avancini Ferreira Alves; Flair José Carrilho; Claudia P. Oliveira

S-Nitroso-N-acetylcysteine (SNAC) is a water soluble primary S-nitrosothiol capable of transferring and releasing nitric oxide and inducing several biochemical activities, including modulation of hepatic stellate cell activation. In this study, we evaluated the antifibrotic activity of SNAC in an animal model of nonalcoholic steatohepatitis (NASH) induced in Sprague-Dawley rats fed with a choline-deficient, high trans fat diet and exposed to diethylnitrosamine for 8 weeks. The rats were divided into three groups: SNAC, which received oral SNAC solution daily; NASH, which received the vehicle; and control, which received standard diet and vehicle. Genes related to fibrosis (matrix metalloproteinases [MMP]-13, -9, and -2), transforming growth factor β-1 [TGFβ-1], collagen-1α, and tissue inhibitors of metalloproteinase [TIMP-1 and -2] and oxidative stress (heat-shock proteins [HSP]-60 and -90) were evaluated. SNAC led to a 34.4% reduction in the collagen occupied area associated with upregulation of MMP-13 and -9 and downregulation of HSP-60, TIMP-2, TGFβ-1, and collagen-1α. These results indicate that oral SNAC administration may represent a potential antifibrotic treatment for NASH.


The Journal of Membrane Biology | 2016

Connexins, Pannexins, and Their Channels in Fibroproliferative Diseases

Bruno Cogliati; Gregory Mennecier; Joost Willebrords; Tereza Cristina da Silva; M. Maes; Isabel Veloso Alves Pereira; Sara Crespo Yanguas; Francisco Javier Hernandez-Blazquez; M.L. Dagli; Mathieu Vinken

Cellular and molecular mechanisms of wound healing, tissue repair, and fibrogenesis are established in different organs and are essential for the maintenance of function and tissue integrity after cell injury. These mechanisms are also involved in a plethora of fibroproliferative diseases or organ-specific fibrotic disorders, all of which are associated with the excessive deposition of extracellular matrix components. Fibroblasts, which are key cells in tissue repair and fibrogenesis, rely on communicative cellular networks to ensure efficient control of these processes and to prevent abnormal accumulation of extracellular matrix into the tissue. Despite the significant impact on human health, and thus the epidemiologic relevance, there is still no effective treatment for most fibrosis-related diseases. This paper provides an overview of current concepts and mechanisms involved in the participation of cellular communication via connexin-based pores as well as pannexin-based channels in the processes of tissue repair and fibrogenesis in chronic diseases. Understanding these mechanisms may contribute to the development of new therapeutic strategies to clinically manage fibroproliferative diseases and organ-specific fibrotic disorders.


Toxicology Mechanisms and Methods | 2016

Connexin32: a mediator of acetaminophen-induced liver injury?

M. Maes; Mitchell R. McGill; Tereza Cristina da Silva; Margitta Lebofsky; Cintia Maria Monteiro de Araújo; Taynã Tiburcio; Isabel Veloso Alves Pereira; Joost Willebrords; Sara Crespo Yanguas; Anwar Farhood; M.L. Dagli; Hartmut Jaeschke; Bruno Cogliati; Mathieu Vinken

Abstract Connexin32 is the building block of hepatocellular gap junctions, which control direct intercellular communication and thereby act as goalkeepers of liver homeostasis. This study was set up to investigate whether connexin32 is involved in hepatotoxicity induced by the analgesic and antipyretic drug acetaminophen. To this end, whole body connexin32 knock-out mice were overdosed with acetaminophen followed by sampling at different time points within a 24-h time frame. Evaluation was done based upon a series of clinically and mechanistically relevant read-outs, including protein adduct formation, histopathological examination, measurement of alanine aminotransferase activity, cytokine production, levels of reduced and oxidized glutathione and hepatic protein amounts of proliferating cell nuclear antigen. In essence, it was found that genetic ablation of connexin32 has no influence on several key events in acetaminophen-induced hepatotoxicity, including cell death, inflammation or oxidative stress, yet it does affect production of protein adducts as well as proliferating cell nuclear antigen steady-state protein levels. This outcome is not in line with previous studies, which are contradicting on their own, as both amplification and alleviation of this toxicological process by connexin32 have been described. This could question the suitability of the currently available models and tools to investigate the role of connexin32 in acetaminophen-triggered hepatotoxicity.


Excli Journal | 2016

Connexins and pannexins in liver damage

Sara Crespo Yanguas; Joost Willebrords; M. Maes; Tereza Cristina da Silva; Isabel Veloso Alves Pereira; Bruno Cogliati; Maria Lúcia Zaidan Dagli; Mathieu Vinken

Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical diagnostic biomarkers and drug targets.


Toxicology Letters | 2017

Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice

M. Maes; Sara Crespo Yanguas; Joost Willebrords; James L. Weemhoff; Tereza Cristina da Silva; Elke Decrock; Margitta Lebofsky; Isabel Veloso Alves Pereira; Luc Leybaert; Anwar Farhood; Hartmut Jaeschke; Bruno Cogliati; Mathieu Vinken

Historically, connexin hemichannels have been considered as structural precursors of gap junctions. However, accumulating evidence points to independent roles for connexin hemichannels in cellular signaling by connecting the intracellular compartment with the extracellular environment. Unlike gap junctions, connexin hemichannels seem to be mainly activated in pathological processes. The present study was set up to test the potential involvement of hemichannels composed of connexin32 and connexin43 in acute hepatotoxicity induced by acetaminophen. Prior to this, in vitro testing was performed to confirm the specificity and efficacy of TAT-Gap24 and TAT-Gap19 in blocking connexin32 and connexin43 hemichannels, respectively. Subsequently, mice were overdosed with acetaminophen followed by treatment with TAT-Gap24 or TAT-Gap19 or a combination of both after 1.5h. Sampling was performed 3, 6, 24 and 48h following acetaminophen administration. Evaluation of the effects of connexin hemichannel inhibition was based on a series of clinically relevant read-outs, measurement of inflammatory cytokines and oxidative stress. Subsequent treatment of acetaminophen-overdosed mice with TAT-Gap19 only marginally affected liver injury. In contrast, a significant reduction in serum alanine aminotransferase activity was found upon administration of TAT-Gap24 to intoxicated animals. Furthermore, co-treatment of acetaminophen-overdosed mice with both peptides revealed an additive effect as even lower serum alanine aminotransferase activity was observed. Blocking of connexin32 or connexin43 hemichannels individually was found to decrease serum quantities of pro-inflammatory cytokines, while no effects were observed on the occurrence of hepatic oxidative stress. This study shows for the first time a role for connexin hemichannels in acetaminophen-induced acute liver failure.


Clinical and Experimental Pharmacology and Physiology | 2017

Connexin32 deficiency is associated with liver injury, inflammation and oxidative stress in experimental non-alcoholic steatohepatitis

Taynã Tiburcio; Joost Willebrords; Tereza Cristina da Silva; Isabel Veloso Alves Pereira; Marina Sayuri Nogueira; Sara Crespo Yanguas; M. Maes; Elisangela dos Anjos Silva; M.L. Dagli; Inar Alves de Castro; Claudia Pinto Marques Souza de Oliveira; Mathieu Vinken; Bruno Cogliati

Non‐alcoholic steatohepatitis is a highly prevalent liver pathology featured by hepatocellular fat deposition and inflammation. Connexin32, which is the major building block of hepatocellular gap junctions, has a protective role in hepatocarcinogenesis and is downregulated in chronic liver diseases. However, the role of connexin32 in non‐alcoholic steatohepatitis remains unclear. Connexin32−/− mice and their wild‐type littermates were fed a choline‐deficient high‐fat diet. The manifestation of non‐alcoholic steatohepatitis was evaluated based on a battery of clinically relevant read‐outs, including histopathological examination, diverse indicators of inflammation and liver damage, in‐depth lipid analysis, assessment of oxidative stress, insulin and glucose tolerance, liver regeneration and lipid‐related biomarkers. Overall, more pronounced liver damage, inflammation and oxidative stress were observed in connexin32−/− mice compared to wild‐type animals. No differences were found in insulin and glucose tolerance measurements and liver regeneration. However, two lipid‐related genes, srebf1 and fabp3, were upregulated in Cx32−/− mice in comparison with wild‐type animals. These findings suggest that connexin32‐based signalling is not directly involved in steatosis as such, but rather in the sequelae of this process, which underlie progression of non‐alcoholic steatohepatitis.


Toxicology Mechanisms and Methods | 2016

Connexin32 deficiency exacerbates carbon tetrachloride-induced hepatocellular injury and liver fibrosis in mice

Bruno Cogliati; Sara Crespo Yanguas; Tereza Cristina da Silva; Thiago Pinheiro Arrais Aloia; Marina Sayuri Nogueira; Mirela Aline Real-Lima; Lucas Martins Chaible; Daniel S. Sanches; Joost Willebrords; M. Maes; Isabel Veloso Alves Pereira; Inar Alves de Castro; Mathieu Vinken; M.L. Dagli

Abstract Objective: Liver fibrosis results from the perpetuation of the normal wound healing response to several types of injury. Despite the wealth of knowledge regarding the involvement of intracellular and extracellular signaling pathways in liver fibrogenesis, information about the role of intercellular communication mediated by gap junctions is scarce. Methods: In this study, liver fibrosis was chemically induced by carbon tetrachloride in mice lacking connexin32, the major liver gap junction constituent. The manifestation of liver fibrosis was evaluated based on a series of read-outs, including collagen morphometric and mRNA analysis, oxidative stress, apoptotic, proliferative and inflammatory markers. Results: More pronounced liver damage and enhanced collagen deposition were observed in connexin32 knockout mice compared to wild-type animals in experimentally triggered induced liver fibrosis. No differences between both groups were noticed in apoptotic signaling nor in inflammation markers. However, connexin32 deficient mice displayed decreased catalase activity and increased malondialdehyde levels. Conclusion: These findings could suggest that connexin32-based signaling mediates tissue resistance against liver damage by the modulation of the antioxidant capacity. In turn, this could point to a role for connexin32 signaling as a therapeutic target in the treatment of liver fibrosis.


International Journal of Molecular Sciences | 2018

TAT-Gap19 and Carbenoxolone Alleviate Liver Fibrosis in Mice.

Sara Crespo Yanguas; Tereza Cristina da Silva; Isabel Veloso Alves Pereira; Joost Willebrords; M. Maes; Marina Sayuri Nogueira; Inar Alves de Castro; Isabelle Leclercq; Guilherme Ribeiro Romualdo; Luis Fernando Barbisan; Luc Leybaert; Bruno Cogliati; Mathieu Vinken

Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5′-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.

Collaboration


Dive into the Isabel Veloso Alves Pereira's collaboration.

Top Co-Authors

Avatar

Bruno Cogliati

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

M. Maes

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Mathieu Vinken

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Joost Willebrords

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.T. Stefano

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge