Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabella Artner is active.

Publication


Featured researches published by Isabella Artner.


Molecular and Cellular Biology | 2003

Members of the Large Maf Transcription Family Regulate Insulin Gene Transcription in Islet β Cells

Taka-aki Matsuoka; Li Zhao; Isabella Artner; Harry W. Jarrett; David B. Friedman; Anna L. Means; Roland Stein

ABSTRACT The C1/RIPE3b1 (−118/−107 bp) binding factor regulates pancreatic-β-cell-specific and glucose-regulated transcription of the insulin gene. In the present study, the C1/RIPE3b1 activator from mouse βTC-3 cell nuclear extracts was purified by DNA affinity chromatography and two-dimensional gel electrophoresis. C1/RIPE3b1 binding activity was found in the roughly 46-kDa fraction at pH 7.0 and pH 4.5, and each contained N- and C-terminal peptides to mouse MafA as determined by peptide mass mapping and tandem spectrometry. MafA was detected in the C1/RIPE3b1 binding complex by using MafA peptide-specific antisera. In addition, MafA was shown to bind within the enhancer region (−340/−91 bp) of the endogenous insulin gene in βTC-3 cells in the chromatin immunoprecipitation assay. These results strongly suggested that MafA was the β-cell-enriched component of the RIPE3b1 activator. However, reverse transcription-PCR analysis demonstrated that mouse islets express not only MafA but also other members of the large Maf family, specifically c-Maf and MafB. Furthermore, immunohistochemical studies revealed that at least MafA and MafB were present within the nuclei of islet β cells and not within pancreas acinar cells. Because MafA, MafB, and c-Maf were each capable of specifically binding to and activating insulin C1 element-mediated expression, our results suggest that all of these factors play a role in islet β-cell function.


Proceedings of the National Academy of Sciences of the United States of America | 2007

MafB is required for islet beta cell maturation

Isabella Artner; Bruno Blanchi; Jeffrey C. Raum; Min Guo; Tomomi Kaneko; Sabine P. Cordes; Michael H. Sieweke; Roland Stein

Pancreatic endocrine cell differentiation depends on transcription factors that also contribute in adult insulin and glucagon gene expression. Islet cell development was examined in mice lacking MafB, a transcription factor expressed in immature α (glucagon+) and β (insulin+) cells and capable of activating insulin and glucagon expression in vitro. We observed that MafB−/− embryos had reduced numbers of insulin+ and glucagon+ cells throughout development, whereas the total number of endocrine cells was unchanged. Moreover, production of insulin+ cells was delayed until embryonic day (E) 13.5 in mutant mice and coincided with the onset of MafA expression, a MafB-related activator of insulin transcription. MafA expression was only detected in the insulin+ cell population in MafB mutants, whereas many important regulatory proteins continued to be expressed in insulin− β cells. However, Pdx1, Nkx6.1, and GLUT2 were selectively lost in these insulin-deficient cells between E15.5 and E18.5. MafB appears to directly regulate transcription of these genes, because binding was observed within endogenous control region sequences. These results demonstrate that MafB plays a previously uncharacterized role by regulating transcription of key factors during development that are required for the production of mature α and β cells.


Diabetes | 2010

MafA and MafB regulate genes critical to beta-cells in a unique temporal manner.

Isabella Artner; Yan Hang; Magdalena Mazur; Tsunehiko Yamamoto; Min Guo; Jill Lindner; Mark A. Magnuson; Roland Stein

OBJECTIVE Several transcription factors are essential to pancreatic islet β-cell development, proliferation, and activity, including MafA and MafB. However, MafA and MafB are distinct from others in regard to temporal and islet cell expression pattern, with β-cells affected by MafB only during development and exclusively by MafA in the adult. Our aim was to define the functional relationship between these closely related activators to the β-cell. RESEARCH DESIGN AND METHODS The distribution of MafA and MafB in the β-cell population was determined immunohistochemically at various developmental and perinatal stages in mice. To identify genes regulated by MafB, microarray profiling was performed on wild-type and MafB−/− pancreata at embryonic day 18.5, with candidates evaluated by quantitative RT-PCR and in situ hybridization. The potential role of MafA in the expression of verified targets was next analyzed in adult islets of a pancreas-wide MafA mutant (termed MafAΔPanc). RESULTS MafB was produced in a larger fraction of β-cells than MafA during development and found to regulate potential effectors of glucose sensing, hormone processing, vesicle formation, and insulin secretion. Notably, expression from many of these genes was compromised in MafAΔPanc islets, suggesting that MafA is required to sustain expression in adults. CONCLUSIONS Our results provide insight into the sequential manner by which MafA and MafB regulate islet β-cell formation and maturation.


Stem Cells | 2009

FGF2 Specifies hESC‐Derived Definitive Endoderm into Foregut/Midgut Cell Lineages in a Concentration‐Dependent Manner

Jacqueline Ameri; Anders Ståhlberg; Jesper Pedersen; Jenny K. Johansson; Martina Johannesson; Isabella Artner; Henrik Semb

Fibroblast growth factor (FGF) signaling controls axis formation during endoderm development. Studies in lower vertebrates have demonstrated that FGF2 primarily patterns the ventral foregut endoderm into liver and lung, whereas FGF4 exhibits broad anterior‐posterior and left‐right patterning activities. Furthermore, an inductive role of FGF2 during dorsal pancreas formation has been shown. However, whether FGF2 plays a similar role during human endoderm development remains unknown. Here, we show that FGF2 specifies hESC‐derived definitive endoderm (DE) into different foregut lineages in a dosage‐dependent manner. Specifically, increasing concentrations of FGF2 inhibits hepatocyte differentiation, whereas intermediate concentration of FGF2 promotes differentiation toward a pancreatic cell fate. At high FGF2 levels specification of midgut endoderm into small intestinal progenitors is increased at the expense of PDX1+ pancreatic progenitors. High FGF2 concentrations also promote differentiation toward an anterior foregut pulmonary cell fate. Finally, by dissecting the FGF receptor intracellular pathway that regulates pancreas specification, we demonstrate for the first time to the best of our knowledge that induction of PDX1+ pancreatic progenitors relies on FGF2‐mediated activation of the MAPK signaling pathway. Altogether, these observations suggest a broader gut endodermal patterning activity of FGF2 that corresponds to what has previously been advocated for FGF4, implying a functional switch from FGF4 to FGF2 during evolution. Thus, our results provide new knowledge of how cell fate specification of human DE is controlled—facts that will be of great value for future regenerative cell therapies. STEM CELLS 2010;28:45–56


Molecular and Cellular Biology | 2010

Islet β-Cell-Specific MafA Transcription Requires the 5′-Flanking Conserved Region 3 Control Domain

Jeffrey C. Raum; Chad S. Hunter; Isabella Artner; Eva Henderson; Min Guo; Lynda Elghazi; Beatriz Sosa-Pineda; Takeshi Ogihara; Raghavendra G. Mirmira; Lori Sussel; Roland Stein

ABSTRACT MafA is a key transcriptional activator of islet β cells, and its exclusive expression within β cells of the developing and adult pancreas is distinct among pancreatic regulators. Region 3 (base pairs −8118 to −7750 relative to the transcription start site), one of six conserved 5′ cis domains of the MafA promoter, is capable of directing β-cell-line-selective expression. Transgenic reporters of region 3 alone (R3), sequences spanning regions 1 to 6 (R1-6; base pairs −10428 to +230), and R1-6 lacking R3 (R1-6ΔR3) were generated. Only the R1-6 transgene was active in MafA+ insulin+ cells during development and in adult cells. R1-6 also mediated glucose-induced MafA expression. Conversely, pancreatic expression was not observed with the R3 or R1-6ΔR3 line, although much of the nonpancreatic expression pattern was shared between the R1-6 and R1-6ΔR3 lines. Further support for the importance of R3 was also shown, as the islet regulators Nkx6.1 and Pax6, but not NeuroD1, activated MafA in gel shift, chromatin immunoprecipitation (ChIP), and transfection assays and in vivo mouse knockout models. Lastly, ChIP demonstrated that Pax6 and Pdx-1 also bound to R1 and R6, potentially functioning in pancreatic and nonpancreatic expression. These data highlight the nature of the cis- and trans-acting factors controlling the β-cell-specific expression of MafA.


Journal of Biological Chemistry | 2008

MafA and MafB Regulate Pdx1 Transcription through the Area II Control Region in Pancreatic β Cells

Amanda M. Vanhoose; Susan Samaras; Isabella Artner; Eva Henderson; Yan Hang; Roland Stein

Pancreatic-duodenal homeobox factor-1 (Pdx1) is highly enriched in islet β cells and integral to proper cell development and adult function. Of the four conserved 5′-flanking sequence blocks that contribute to transcription in vivo, Area II (mouse base pairs -2153/-1923) represents the only mammalian specific control domain. Here we demonstrate that regulation of β-cell-enriched Pdx1 expression by the MafA and MafB transcription factors is exclusively through Area II. Thus, these factors were found to specifically activate through Area II in cell line transfection-based assays, and MafA, which is uniquely expressed in adult islet β cells was only bound to this region in quantitative chromatin immunoprecipitation studies. MafA and MafB are produced in β cells during development and were both bound to Area II at embryonic day 18.5. Expression of a transgene driven by Pdx1 Areas I and II was also severely compromised during insulin+ cell formation in MafB-/- mice, consistent with the importance of this large Maf in β-cell production and Pdx1 expression. These findings illustrate the significance of large Maf proteins to Pdx1 expression in β cells, and in particular MafB during pancreatic development.


Journal of Biological Chemistry | 2005

Interactions between Areas I and II Direct pdx-1 Expression Specifically to Islet Cell Types of the Mature and Developing Pancreas

Jennifer C. Van Velkinburgh; Susan Samaras; Kevin Gerrish; Isabella Artner; Roland Stein

PDX-1 regulates transcription of genes involved in islet β cell function and pancreas development. Islet-specific expression is controlled by 5′-flanking sequences from base pair (bp) -2917 to -1918 in transgenic experiments, which encompasses both conserved (i.e. Area I (bp -2761/-2457), Area II (bp -2153/-1923)) and non-conserved pdx-1 sequences. However, only an Area II-driven transgene is independently active in vivo, albeit in only a fraction of islet PDX-1-producing cells. Our objective was to identify the sequences within the -2917/-1918-bp region that act in conjunction with Area II to allow comprehensive expression in islet PDX-1+ cells. In cell line-based transfection assays, only Area I effectively potentiated Area II activity. Both Area I and Area II functioned in an orientation-independent manner, whereas synergistic, enhancer-like activation was uniquely found with duplicated Area II. Chimeras of Area II and the generally active SV40 enhancer or the β cell-specific insulin enhancer suggested that islet cell-enriched activators were necessary for Area I activation, because Area II-mediated stimulation was reduced by the SV40 enhancer and activated by the insulin enhancer. Several conserved sites within Area I were important in Area I/Area II activation, with binding at bp -2614/-2609 specifically controlled by Nkx2.2, an insulin gene regulator that is required for terminal β cell differentiation. The ability of Area I to modulate Area II activation was also observed in vivo, as an Area I/Area II-driven transgene recapitulated the endogenous pdx-1 expression pattern in developing and adult islet cells. These results suggest that Area II is a central pdx-1 control region, whose islet cell activity is uniquely modified by Area I regulatory factors.


Diabetologia | 2016

Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans.

Hedvig Bennet; Inês G. Mollet; Alexander Balhuizen; Anya Medina; Cecilia Nagorny; Annika Bagge; João Fadista; Emilia Ottosson-Laakso; Petter Vikman; Marloes Dekker-Nitert; Lena Eliasson; Nils Wierup; Isabella Artner; Malin Fex

Aims/hypothesisThe Gq-coupled 5-hydroxytryptamine 2B (5-HT2B) receptor is known to regulate the proliferation of islet beta cells during pregnancy. However, the role of serotonin in the control of insulin release is still controversial. The aim of the present study was to explore the role of the 5-HT2B receptor in the regulation of insulin secretion in mouse and human islets, as well as in clonal INS-1(832/13) cells.MethodsExpression of HTR2B mRNA and 5-HT2B protein was examined with quantitative real-time PCR, RNA sequencing and immunohistochemistry. α-Methyl serotonin maleate salt (AMS), a serotonin receptor agonist, was employed for robust 5-HT2B receptor activation. Htr2b was silenced with small interfering RNA in INS-1(832/13) cells. Insulin secretion, Ca2+ response and oxygen consumption rate were determined.ResultsImmunohistochemistry revealed that 5-HT2B is expressed in human and mouse islet beta cells. Activation of 5-HT2B receptors by AMS enhanced glucose-stimulated insulin secretion (GSIS) in human and mouse islets as well as in INS-1(832/13) cells. Silencing Htr2b in INS-1(832/13) cells led to a 30% reduction in GSIS. 5-HT2B receptor activation produced robust, regular and sustained Ca2+ oscillations in mouse islets with an increase in both peak distance (period) and time in the active phase as compared with control. Enhanced insulin secretion and Ca2+ changes induced by AMS coincided with an increase in oxygen consumption in INS-1(832/13) cells.Conclusions/interpretationActivation of 5-HT2B receptors stimulates GSIS in beta cells by triggering downstream changes in cellular Ca2+ flux that enhance mitochondrial metabolism. Our findings suggest that serotonin and the 5-HT2B receptor stimulate insulin release.


Diabetes | 2013

Microphthalmia Transcription Factor Regulates Pancreatic β-Cell Function

Magdalena Mazur; Marcus Winkler; Elvira Ganic; Jesper K. Colberg; Jenny K. Johansson; Hedvig Bennet; Malin Fex; Ulrike A. Nuber; Isabella Artner

Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell–specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in β-cell mass in adult mice. Mutant β-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating β-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and β-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved β-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type β-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls β-cell function.


Cancer Research | 2012

Definition of Genetic Events Directing the Development of Distinct Types of Brain Tumors from Postnatal Neural Stem/Progenitor Cells

Falk Hertwig; Katharina Meyer; Sebastian Braun; Sara Ek; Rainer Spang; Cosima V. Pfenninger; Isabella Artner; Gaëlle Prost; Xinbin Chen; Jaclyn A. Biegel; Alexander R. Judkins; Elisabet Englund; Ulrike A. Nuber

Although brain tumors are classified and treated based upon their histology, the molecular factors involved in the development of various tumor types remain unknown. In this study, we show that the type and order of genetic events directs the development of gliomas, central nervous system primitive neuroectodermal tumors, and atypical teratoid/rhabdoid-like tumors from postnatal mouse neural stem/progenitor cells (NSC/NPC). We found that the overexpression of specific genes led to the development of these three different brain tumors from NSC/NPCs, and manipulation of the order of genetic events was able to convert one established tumor type into another. In addition, loss of the nuclear chromatin-remodeling factor SMARCB1 in rhabdoid tumors led to increased phosphorylation of eIF2α, a central cytoplasmic unfolded protein response (UPR) component, suggesting a role for the UPR in these tumors. Consistent with this, application of the proteasome inhibitor bortezomib led to an increase in apoptosis of human cells with reduced SMARCB1 levels. Taken together, our findings indicate that the order of genetic events determines the phenotypes of brain tumors derived from a common precursor cell pool, and suggest that the UPR may represent a therapeutic target in atypical teratoid/rhabdoid tumors.

Collaboration


Dive into the Isabella Artner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Henderson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Min Guo

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Yan Hang

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge