Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabella Børja is active.

Publication


Featured researches published by Isabella Børja.


Plant Biosystems | 2007

Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.)

L. Finér; Heljä-Sisko Helmisaari; Krista Lõhmus; Hooshang Majdi; Ivano Brunner; Isabella Børja; T. Eldhuset; Douglas L. Godbold; Tine Grebenc; Bohdan Konôpka; Hojka Kraigher; M.-R. Möttönen; M. Ohashi; J. Oleksyn; I. Ostonen; V. Uri; Elena Vanguelova

Abstract Fine roots (<2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors. The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m−2, and that of spruce and pine 297 g m−2 and 277 g m−2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone. The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.


Plant Biosystems | 2007

Fine roots and ectomycorrhizas as indicators of environmental change

Pavel Cudlín; B. Kieliszewska-Rokicka; M. Rudawska; Tine Grebenc; O. Alberton; Tarja Lehto; M. R. Bakker; Isabella Børja; Bohdan Konôpka; T. Leski; Hojka Kraigher; T. W. Kuyper

Abstract Human-induced and natural stress factors can affect fine roots and ectomycorrhizas. Therefore they have potential utility as indicators of environmental change. We evaluated, through meta-analysis, the magnitude of the effects of acidic deposition, nitrogen deposition, increased ozone levels, elevated atmospheric carbon dioxide, and drought on fine roots and ectomycorrhizal (ECM) characteristics. Ectomycorrhizal colonization was an unsuitable parameter for environmental change, but fine root length and biomass could be useful. Acidic deposition had a significantly negative impact on fine roots, root length being more sensitive than root biomass. There were no significant effects of nitrogen deposition or elevated tropospheric ozone on the quantitative root parameters. Elevated CO2 had a significant positive effect. Drought had a significantly negative effect on fine root biomass. The negative effect of acidic deposition and the positive effect of elevated CO2 increased over time, indicating that effects were persistent contrary the other factors. The meta-analysis also showed that experimental conditions, including both laboratory and field experiments, were a major source of variation. In addition to quantitative changes, environmental changes affect the species composition of the ectomycorrhizal fungal community.


Phytopathology | 2006

Etiology and Real-Time Polymerase Chain Reaction-Based Detection of Gremmeniella- and Phomopsis-Associated Disease in Norway Spruce Seedlings

Isabella Børja; Halvor Solheim; Ari M. Hietala; Carl Gunnar Fossdal

ABSTRACT In spring 2002, an unusual disease outburst was recorded on Norway spruce seedlings in southeast Norway. Extensive damage was recorded on 1- and 2-year-old Norway spruce seedlings that either had wintered in nursery cold storage or had been planted out in autumn 2001. The damage was characterized by leader shoot dieback and stem necroses on the upper or lower part of the shoot from 2001. Gremmeniella abietina and a Phomopsis sp. frequently were isolated from the diseased seedlings. Internal transcribed spacer (ITS) ribosomal (r)DNA sequence analysis and random amplified microsatellites profiling indicated that the G. abietina strains associated with diseased nursery seedlings belonged to the large-tree type (LTT) ecotype of the European race of G. abietina var. abietina, and inoculation tests confirmed their pathogenicity on Norway spruce. Based on ITS rDNA sequence analysis, the Phomopsis strains associated with diseased seedlings did not represent any characterized Phomopsis spp. associated with conifers. The Phomopsis sp. was not pathogenic in inoculation tests, indicating that it may be a secondary colonizer. ITS-based real-time polymerase chain reaction assays were developed in order to detect and quantify G. abietina and Phomopsis in the nursery stock. We describe here the G. abietina-associated shoot dieback symptoms on Norway spruce seedlings and conclude that the unusual disease outburst likely was related to the G. abietina var. abietina epidemic caused by the LTT on large Scots pines in 2001.


Tree Physiology | 2011

Effect of thinning on anatomical adaptations of Norway spruce needles

Roman Gebauer; Daniel Volařík; Josef Urban; Isabella Børja; Nina Elisabeth Nagy; Toril Drabløs Eldhuset; Paal Krokene

Conifers and other trees are constantly adapting to changes in light conditions, water/nutrient supply and temperatures by physiological and morphological modifications of their foliage. However, the relationship between physiological processes and anatomical characteristics of foliage has been little explored in trees. In this study we evaluated needle structure and function in Norway spruce families exposed to different light conditions and transpiration regimes. We compared needle characteristics of sun-exposed and shaded current-year needles in a control plot and a thinned plot with 50% reduction in stand density. Whole-tree transpiration rates remained similar across plots, but increased transpiration of lower branches after thinning implies that sun-exposed needles in the thinned plot were subjected to higher water stress than sun-exposed needles in the control plot. In general, morphological and anatomical needle parameters increased with increasing tree height and light intensity. Needle width, needle cross-section area, needle stele area and needle flatness (the ratio of needle thickness to needle width) differed most between the upper and lower canopy. The parameters that were most sensitive to the altered needle water status of the upper canopy after thinning were needle thickness, needle flatness and percentage of stele area in needle area. These results show that studies comparing needle structure or function between tree species should consider not only tree height and light gradients, but also needle water status. Unaccounted for differences in needle water status may have contributed to the variable relationship between needle structure and irradiance that has been observed among conifers.


Holzforschung | 2011

qPCR as a tool to study basidiomycete colonization in wooden field stakes

Annica Pilgård; Gry Alfredsen; Charlotte Gjelstrup Björdal; Carl Gunnar Fossdal; Isabella Børja

Abstract Molecular methods are emerging also as useful tools for wood protection studies. The aim of the present study was to evaluate quantitative real-time polymerase chain reaction (qPCR) as a tool for investigating details of the colonization pattern of basidiomycete decay fungi in wood samples after 6 years of soil exposure. Samples of Pinus sylvestris L. (heartwood without treatment), furfurylated P. sylvestris sapwood and Cu-HDO treated P. sylvestris sapwood was in focus. The qPCR method based on basidiomycete DNA content in the wood had the highest sensitivity, while the ergosterol assay was more sensitive than the chitin assay. Visual rating was compared with laboratory analyses and was found to be correlating well with qPCR. This study demonstrates that qPCR in combination with microscopy provides relevant data about basidiomycete colonization in wooden material.


Trees-structure and Function | 2012

Effects of different light conditions on the xylem structure of Norway spruce needles

Roman Gebauer; Daniel Volařík; Josef Urban; Isabella Børja; Nina Elisabeth Nagy; Toril Drabløs Eldhuset; Paal Krokene

Conifer needles are extraordinarily variable and much of this diversity is linked to the water transport capacity of the xylem and to xylem conduit properties. However, we still know little about how anatomical characteristics influence the hydraulic efficiency of needle xylem in different parts of the crown. In this study we evaluated needle function and anatomy in Norway spruce families exposed to different light conditions. We measured tracheid and needle characteristics of sun-exposed and shaded current-year needles in two experimental plots: a control plot and a thinned plot with 50% reduction in stand density. Sun-exposed needles had a larger tracheid lumen area than shaded needles, and this was caused by a larger maximum tracheid lumen diameter, while the minimum lumen diameter was less plastic. Sun-exposed needles had also higher theoretical hydraulic conductivity than shaded needles. Thinning leads to increased radiation to the lower branches, and presumably exposes the upper branches to stronger water stress than before thinning. Thinning affected several needle parameters both in sun-exposed and shaded needles; tracheid lumens were more circular and minimum tracheid lumen diameter was larger in the thinned plot, whereas maximum tracheid lumen diameter was less plastic on both plots. This study demonstrates that needle xylem structure in Norway spruce is clearly influenced by the light gradient within the tree crown.


Annals of Forest Science | 2010

A leap forward in geographic scale for forest ectomycorrhizal fungi

Filipa Cox; Nadia Barsoum; Martin I. Bidartondo; Isabella Børja; Erik A. Lilleskov; Lars Ola Nilsson; Pasi Rautio; Kath Tubby; Lars Vesterdal

ConclusionThe functionally critical role of mycorrhizal fungi in forest ecosystems, and the imminent threat of climate change that may act to alter mycorrhizal functional biodiversity, means there is an urgent need for a regional to continental-scale assessment of mycorrhizal distributions. Until recently, it had not been possible to cost-effectively assess mycorrhizas precisely and accurately. A large-scale survey of ICP Forests plots would be only the first stage in answering many of the questions outlined above, but it is essential if future studies are going to address these questions with hypothesis-driven research in a cohesive manner, rather than remain independent for lack of a unified approach. The chance to utilise the vast network of biomonitoring plots at this time is a remarkable opportunity because it minimises the logistics and costs associated with achieving such an enormous effort and provides a rare stable — past and future — ground for forest ecosystem scientific investigation. In the face of rapid global change, we finally have an opportunity to accurately integrate mycorrhizal distribution data with long-term environmental monitoring, providing a basic understanding of functionally crucial organisms, and at the same time creating an invaluable resource for future research.


New Phytologist | 2017

Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus.

Hugh B. Cross; Jørn Henrik Sønstebø; Nina Elisabeth Nagy; Volkmar Timmermann; Halvor Solheim; Isabella Børja; Håvard Kauserud; Tor Carlsen; Barbara Rzepka; Katarzyna Wasak; Adam Vivian-Smith; Ari M. Hietala

Summary High biodiversity is regarded as a barrier against biological invasions. We hypothesized that the invasion success of the pathogenic ascomycete Hymenoscyphus fraxineus threatening common ash in Europe relates to differences in dispersal and colonization success between the invader and the diverse native competitors. Ash leaf mycobiome was monitored by high‐throughput sequencing of the fungal internal transcribed spacer region (ITS) and quantitative PCR profiling of H. fraxineus DNA. Initiation of ascospore production by H. fraxineus after overwintering was followed by pathogen accumulation in asymptomatic leaves. The induction of necrotic leaf lesions coincided with escalation of H. fraxineus DNA levels and changes in proportion of biotrophs, followed by an increase of ubiquitous endophytes with pathogenic potential. H. fraxineus uses high propagule pressure to establish in leaves as quiescent thalli that switch to pathogenic mode once these thalli reach a certain threshold – the massive feedback from the saprophytic phase enables this fungus to challenge host defenses and the resident competitors in mid‐season when their density in host tissues is still low. Despite the general correspondence between the ITS‐1 and ITS‐2 datasets, marker biases were observed, which suggests that multiple barcodes provide better overall representation of mycobiomes.


Frontiers in Plant Science | 2016

Novel Hydraulic Vulnerability Proxies for a Boreal Conifer Species Reveal That Opportunists May Have Lower Survival Prospects under Extreme Climatic Events

Sabine Rosner; Jan Světlík; Kjell Andreassen; Isabella Børja; Lise Dalsgaard; Robert Evans; Saskia Luss; Ole Einar Tveito; Svein Solberg

Top dieback in 40–60 years old forest stands of Norway spruce [Picea abies (L.) Karst.] in southern Norway is supposed to be associated with climatic extremes. Our intention was to learn more about the processes related to top dieback and in particular about the plasticity of possible predisposing factors. We aimed at (i) developing proxies for P50 based on anatomical data assessed by SilviScan technology and (ii) testing these proxies for their plasticity regarding climate, in order to (iii) analyze annual variations of hydraulic proxies of healthy looking trees and trees with top dieback upon their impact on tree survival. At two sites we selected 10 tree pairs, i.e., one healthy looking tree and one tree with visual signs of dieback such as dry tops, needle shortening and needle yellowing (n = 40 trees). Vulnerability to cavitation (P50) of the main trunk was assessed in a selected sample set (n = 19) and we thereafter applied SilviScan technology to measure cell dimensions (lumen (b) and cell wall thickness (t)) in these specimen and in all 40 trees in tree rings formed between 1990 and 2010. In a first analysis step, we searched for anatomical proxies for P50. The set of potential proxies included hydraulic lumen diameters and wall reinforcement parameters based on mean, radial, and tangential tracheid diameters. The conduit wall reinforcement based on tangential hydraulic lumen diameters ((t/bht)2) was the best estimate for P50. It was thus possible to relate climatic extremes to the potential vulnerability of single annual rings. Trees with top dieback had significantly lower (t/bht)2 and wider tangential (hydraulic) lumen diameters some years before a period of water deficit (2005–2006). Radial (hydraulic) lumen diameters showed however no significant differences between both tree groups. (t/bht)2 was influenced by annual climate variability; strongest correlations were found with precipitation in September of the previous growing season: high precipitation in previous September resulted in more vulnerable annual rings in the next season. The results are discussed with respect to an “opportunistic behavior” and genetic predisposition to drought sensitivity.


Ecology and Evolution | 2015

Effects of prolonged drought on the anatomy of sun and shade needles in young Norway spruce trees

Roman Gebauer; Daniel Volařík; Josef Urban; Isabella Børja; Nina Elisabeth Nagy; Toril Drabløs Eldhuset; Paal Krokene

Abstract Predicted increases in the frequency and duration of drought are expected to negatively affect tree vitality, but we know little about how water shortage will influence needle anatomy and thereby the trees’ photosynthetic and hydraulic capacity. In this study, we evaluated anatomical changes in sun and shade needles of 20‐year‐old Norway spruce trees exposed to artificial drought stress. Canopy position was found to be important for needle structure, as sun needles had significantly higher values than shade needles for all anatomical traits (i.e., cross‐sectional needle area, number of tracheids in needle, needle hydraulic conductivity, and tracheid lumen area), except proportion of xylem area per cross‐sectional needle area. In sun needles, drought reduced all trait values by 10–40%, whereas in shade needles, only tracheid maximum diameter was reduced by drought. Due to the relatively weaker response of shade needles than sun needles in drought‐stressed trees, the difference between the two needle types was reduced by 25% in the drought‐stressed trees compared to the control trees. The observed changes in needle anatomy provide new understanding of how Norway spruce adapts to drought stress and may improve predictions of how forests will respond to global climate change.

Collaboration


Dive into the Isabella Børja's collaboration.

Top Co-Authors

Avatar

Nina Elisabeth Nagy

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar

Halvor Solheim

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar

Toril Drabløs Eldhuset

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar

Paal Krokene

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar

Volkmar Timmermann

Norwegian Forest and Landscape Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Rosner

University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge