Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Ader is active.

Publication


Featured researches published by Isabelle Ader.


Cancer Research | 2008

Sphingosine Kinase 1: A New Modulator of Hypoxia Inducible Factor 1α during Hypoxia in Human Cancer Cells

Isabelle Ader; Leyre Brizuela; Pierre Bouquerel; Bernard Malavaud; Olivier Cuvillier

Here, we provide the first evidence that sphingosine kinase 1 (SphK1), an oncogenic lipid kinase balancing the intracellular level of key signaling sphingolipids, modulates the transcription factor hypoxia inducible factor 1alpha (HIF-1alpha), master regulator of hypoxia. SphK1 activity is stimulated under low oxygen conditions and regulated by reactive oxygen species. The SphK1-dependent stabilization of HIF-1alpha levels is mediated by the Akt/glycogen synthase kinase-3beta signaling pathway that prevents its von Hippel-Lindau protein-mediated degradation by the proteasome. The pharmacologic and RNA silencing inhibition of SphK1 activity prevents the accumulation of HIF-1alpha and its transcriptional activity in several human cancer cell lineages (prostate, brain, breast, kidney, and lung), suggesting a canonical pathway. Therefore, we propose that SphK1 can act as a master regulator for hypoxia, giving support to its inhibition as a valid strategy to control tumor hypoxia and its molecular consequences.


Oncogene | 2002

RhoB controls the 24 kDa FGF-2-induced radioresistance in HeLa cells by preventing post-mitotic cell death.

Isabelle Ader; Christine Toulas; Florence Dalenc; Caroline Delmas; Jacques Bonnet; Elizabeth Cohen-Jonathan; Gilles Favre

Farnesylated Ras oncoprotein induces a cellular resistance to ionizing radiation that can be reversed by farnesyltransferase inhibitors (FTI). We previously demonstrated that, expression of the 24 kDa FGF2 isoform in wild type ras bearing HeLa cells, induced radioresistance which was also reversed by FTI. We tested the hypothesis that wild type Ras or RhoB, which has been proposed as a potential FTI target, could control the FGF-2-induced radioresistance mechanisms. For this, we expressed inducible dominant negative forms of Ras (RasN17) and Rho (RhoBN19) in 24 kDa FGF2 transfected HeLa cells and analysed their survival after irradiation. While no cell survival modification was observed after RasN17 induction, the expression of RhoBN19 induced a radiosensitization of FGF2 radioresistant HeLa cells in the same range as the one observed after a 48 h treatment with the specific FTI, R115777. Moreover, we showed that activated RhoB but not RhoA induced radioresistance in NIH3T3 cells. The radiosensitizer effect of RhoBN19 expression was due to the induction of the radiation induced post-mitotic cell death. Taken together, these data demonstrate that 24 kDa FGF-2-induced radioresistance is controlled by Rho pathways and suggest that RhoB should be a major determinant in cellular resistance to ionizing radiation.


Oncogene | 2002

The radioprotective effect of the 24 kDa FGF-2 isoform in HeLa cells is related to an increased expression and activity of the DNA dependent protein kinase (DNA-PK) catalytic subunit.

Isabelle Ader; Catherine Muller; Jacques Bonnet; Gilles Favre; Elizabeth Cohen-Jonathan; Bernard Salles; Christine Toulas

We previously reported that overexpression of the 24 kDa basic fibroblast factor (or FGF-2) isoform provides protection from the cytotoxic effect of ionizing radiation (IR). DNA double-strand breaks (DSB), the IR-induced lethal lesions, are mainly repaired in human cells by non-homologous end joining system (NHEJ). NHEJ reaction is dependent on the DNA-PK holoenzyme (composed of a regulatory sub-unit, Ku, and a catalytic sub-unit, DNA-PKcs) that assembles at sites of DNA damage. We demonstrated here that the activity of DNA-PK was increased by twofold in two independent radioresistant cell lines, HeLa 3A and CAPAN A3, overexpressing the 24 kDa FGF-2. This increase was associated with an overexpression of the DNA-PKcs without modification of Ku expression or activity. This overexpression was due to an up-regulation of the DNA-PKcs gene transcription by the 24 kDa FGF-2 isoform. Finally, HeLa 3A cells exhibited the hallmarks of phenotypic changes associated with the overexpression of an active DNA-PKcs. Indeed, a faster repair rate of DSB and sensitization to IR by wortmannin was observed in these cells. Our results represent the characterization of a new mechanism of control of DNA repair and radioresistance in human tumor cells dependent on the overproduction of the 24 kDa FGF-2 isoform.


Current Molecular Pharmacology | 2010

Activation of Sphingosine Kinase-1 in Cancer: Implications for Therapeutic Targeting

Olivier Cuvillier; Isabelle Ader; Pierre Bouquerel; Leyre Brizuela; Bernard Malavaud; Catherine Mazerolles; Pascal Rischmann

Sphingolipid metabolites are critical to the regulation of a number of fundamental biological processes including cancer. Whereas ceramide and sphingosine mediate and trigger apoptosis or cell growth arrest, sphingosine 1-phosphate promotes proliferation, cell survival and angiogenesis. The delicate equilibrium between the intracellular levels of each of these sphingolipids is controlled by the enzymes that either produce or degrade these metabolites. Sphingosine kinase-1 is a crucial regulator of this two-pan balance, because its produces the pro-survival and pro-angiogenic sphingosine 1-phosphate and decreases the amount of both ceramide and sphingosine, the pro-apoptotic sphingolipids. Moreover, its gene is oncogenic, its mRNA is overproduced in several solid tumors, its overexpression protects cells from apoptosis, and its activity is down-regulated by anti-cancer treatments. Therefore, the sphingosine kinase-1/sphingosine 1-phosphate signaling pathway appears to be a target of interest for therapeutic manipulation.


Cancer Research | 2009

When the Sphingosine Kinase 1/Sphingosine 1-Phosphate Pathway Meets Hypoxia Signaling: New Targets for Cancer Therapy

Isabelle Ader; Bernard Malavaud; Olivier Cuvillier

The reduction in the normal level of tissue oxygen tension or hypoxia is a characteristic of solid tumors that triggers the activation of signaling pathways promoting neovascularization, metastasis, increased tumor growth, and resistance to treatments. The activation of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha) has been identified as the master mechanism of adaptation to hypoxia. In a recent study, we identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway, which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis, as a new modulator of HIF-1alpha activity under hypoxic conditions. Here, we consider how the SphK1/S1P signaling pathway could represent a very important target for therapeutic intervention in cancer.


Radiation Research | 1999

The farnesyltransferase inhibitor FTI-277 suppresses the 24-kDa FGF2- induced radioresistance in HeLa cells expressing wild-type RAS

Elizabeth Cohen-Jonathan; Christine Toulas; Isabelle Ader; Sylvia Monteil; Cuider Allal; Jacques Bonnet; Andrew D. Hamilton; Said M. Sebti; Nicolas Daly-Schveitzer; Gilles Favre

In this paper, we describe the effect of the inhibitor of farnesyltransferase (FTI-277) on radioresistance induced by the 24-kDa isoform of FGF2 in human cells expressing wild-type RAS. Treatment with FTI-277 (20 microM) for 48 h prior to irradiation led to a significant decrease in survival of radioresistant cells expressing the 24-kDa isoform (HeLa 3A) but had no effect on the survival of control cells (HeLa PINA). The radiosensitizing effect of FTI-277 is accompanied by a stimulation of postmitotic cell death in HeLa 3A cells and by a reduction in G(2)/M-phase arrest in both cell types. These results clearly demonstrate that at least one farnesylated protein is involved in the regulation of the radioresistance induced by the 24-kDa isoform of FGF2. Furthermore, the radiation-induced G(2)/M-phase arrest is also under the control of farnesylated protein. This work also demonstrates that FTase inhibitors may be effective radiosensitizers of certain human tumors with wild-type RAS.


Molecular Cancer Therapeutics | 2012

First Evidence of Sphingosine 1-Phosphate Lyase Protein Expression and Activity Downregulation in Human Neoplasm: Implication for Resistance to Therapeutics in Prostate Cancer

Leyre Brizuela; Isabelle Ader; Catherine Mazerolles; Magalie Bocquet; Bernard Malavaud; Olivier Cuvillier

This is the first report of sphingosine 1-phosphate lyase (SPL) protein expression and enzymatic activity in human neoplasm. This enzyme drives irreversible degradation of sphingosine 1-phosphate (S1P), a bioactive lipid associated with resistance to therapeutics in various cancers, including prostate adenocarcinoma. In fresh human prostatectomy specimens, a remarkable decrease in SPL enzymatic activity was found in tumor samples, as compared with normal adjacent tissues. A significant relationship between loss of SPL expression and higher Gleason score was confirmed in tissue microarray (TMA) analysis. Moreover, SPL protein expression and activity were inversely correlated with those of sphingosine kinase-1 (SphK1), the enzyme producing S1P. SPL and SphK1 expressions were independently predictive of aggressive cancer on TMA, supporting the relevance of S1P in prostate cancer. In human C4-2B and PC-3 cell lines, silencing SPL enhanced survival after irradiation or chemotherapy by decreasing expression of proteins involved in sensing and repairing DNA damage or apoptosis, respectively. In contrast, enforced expression of SPL sensitized cancer cells to irradiation or docetaxel by tilting the ceramide/S1P balance toward cell death. Interestingly, the S1P degradation products failed to sensitize to chemo- and radiotherapy, supporting the crucial role of ceramide/S1P balance in cancer. Of note, the combination of SPL enforced expression with a SphK1 silencing strategy by further decreasing S1P content made prostate cancer cells even more sensitive to anticancer therapies, suggesting that a dual strategy aimed at stimulating SPL, and inhibiting SphK1 could represent a future approach to sensitize cancer cells to cancer treatments. Mol Cancer Ther; 11(9); 1841–51. ©2012 AACR.


European Journal of Medicinal Chemistry | 2014

Synthesis, structures, and selective toxicity to cancer cells of gold(I) complexes involving N-heterocyclic carbene ligands.

Luca Boselli; Isabelle Ader; Maëlle Carraz; Catherine Hemmert; Olivier Cuvillier; Heinz Gornitzka

New gold(I) complexes containing two 1-[2-(diethylamino)ethyl]imidazolydene ligands have been synthesized and characterized. The X-ray structures of two key compounds are presented. All complexes have been tested for their antiproliferative activities in prostate cancer cell line PC-3. Lipophilicity (Log P) has been determined for these complexes. The most active complex has been tested for the cytotoxic activities in five human cancer cell lines and primary endothelial cells. The most active complex demonstrated a potent selectivity for cancer cells.


International Journal of Cancer | 2001

Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of human farnesyltransferase, BIM‐46228

Gregoire Prevost; Anne Pradines; Marie-Christine Brezak; Marie-Odile Lonchampt; Isabelle Viossat; Isabelle Ader; Christine Toulas; Philip G. Kasprzyk; Thomas D. Gordon; Gilles Favre; Barry Morgan

Oncogenic mutations of the ras gene leading to constitutive activation of downstream effectors have been detected in a wide spectrum of human cancers (pancreas, thyroid, colon, non‐small‐cell lung cancer). Membrane anchorage of Ras, required for functional activity in signal transduction, is facilitated by post‐translational modifications resulting in covalent attachment of a farnesyl group to the cysteine in the C‐terminal CAAX motif. This attachment is mediated by farnesyltransferase (FTase). Here, we report a novel FTase inhibitor, BIM‐46228, which showed (i) specific inhibition of purified human FTase enzyme, (ii) inhibition of proliferation in vitro in a large spectrum of human tumor cell lines, (iii) inhibition of growth of human tumor xenografts in athymic nude mice treated by per os administration and (iv) the benefits of in vitro combination of its activity with chemotherapy or radiotherapy.


Advances in Cancer Research | 2013

Hypoxia, therapeutic resistance, and sphingosine 1-phosphate.

Olivier Cuvillier; Isabelle Ader; Pierre Bouquerel; Leyre Brizuela; Cécile Gstalder; Bernard Malavaud

Hypoxia, defined as a poor oxygenation, has been long recognized as a hallmark of solid tumors and a negative prognostic factor for response to therapeutics and survival of patients. Cancer cells have evolved biochemical mechanisms that allow them to react and adapt to hypoxia. At the cellular level, this adaptation is under the control of two related transcription factors, HIF-1 and HIF-2 (hypoxia-inducible factor), that respond rapidly to decreased oxygen levels to activate the expression of a broad range of genes promoting neoangiogenesis, glycolysis, metastasis, increased tumor growth, and resistance to treatments. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway-which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis-as a new regulator of HIF-1 or HIF-2 activity. In this review, we will focus on how the inhibition/neutralization of the SphK1/S1P signaling could be exploited for cancer therapy.

Collaboration


Dive into the Isabelle Ader's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Bouquerel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Mazerolles

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge