Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Bonnet is active.

Publication


Featured researches published by Isabelle Bonnet.


Science | 2012

Mechanical Control of Morphogenesis by Fat/Dachsous/Four-Jointed Planar Cell Polarity Pathway.

Floris Bosveld; Isabelle Bonnet; Boris Guirao; Sham Tlili; Zhimin Wang; Ambre Petitalot; Raphaël Marchand; Pierre-Luc Bardet; Philippe Marcq; François Graner; Yohanns Bellaïche

The Right Move During development, epithelial tissues deform to give rise to functional tissues and organs. How gene expression controls local cell mechanical properties to drive tissue deformation remains poorly understood. Bosveld et al. (p. 724, published online 12 April) have uncovered how the conserved Fat/Dachsous/Four-jointed signaling pathway controls local mechanical cell properties to generate global tissue contraction in Drosophila epithelial tissue. Polarized proto-cadherin and myosin induce an anisotropic tension at cell junctions and thereby shape epithelial tissue. During animal development, several planar cell polarity (PCP) pathways control tissue shape by coordinating collective cell behavior. Here, we characterize by means of multiscale imaging epithelium morphogenesis in the Drosophila dorsal thorax and show how the Fat/Dachsous/Four-jointed PCP pathway controls morphogenesis. We found that the proto-cadherin Dachsous is polarized within a domain of its tissue-wide expression gradient. Furthermore, Dachsous polarizes the myosin Dachs, which in turn promotes anisotropy of junction tension. By combining physical modeling with quantitative image analyses, we determined that this tension anisotropy defines the pattern of local tissue contraction that contributes to shaping the epithelium mainly via oriented cell rearrangements. Our results establish how tissue planar polarization coordinates the local changes of cell mechanical properties to control tissue morphogenesis.


Nucleic Acids Research | 2008

Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA

Isabelle Bonnet; Andreas Biebricher; Pierre-Louis Porté; Claude Loverdo; Olivier Bénichou; Raphaël Voituriez; Christophe Escudé; Wolfgang Wende; Alfred Pingoud; Pierre Desbiolles

The restriction endonuclease EcoRV can rapidly locate a short recognition site within long non-cognate DNA using ‘facilitated diffusion’. This process has long been attributed to a sliding mechanism, in which the enzyme first binds to the DNA via nonspecific interaction and then moves along the DNA by 1D diffusion. Recent studies, however, provided evidence that 3D translocations (hopping/jumping) also help EcoRV to locate its target site. Here we report the first direct observation of sliding and jumping of individual EcoRV molecules along nonspecific DNA. Using fluorescence microscopy, we could distinguish between a slow 1D diffusion of the enzyme and a fast translocation mechanism that was demonstrated to stem from 3D jumps. Salt effects on both sliding and jumping were investigated, and we developed numerical simulations to account for both the jump frequency and the jump length distribution. We deduced from our study the 1D diffusion coefficient of EcoRV, and we estimated the number of jumps occurring during an interaction event with nonspecific DNA. Our results substantiate that sliding alternates with hopping/jumping during the facilitated diffusion of EcoRV and, furthermore, set up a framework for the investigation of target site location by other DNA-binding proteins.


Cell | 2011

Live-Cell Chromosome Dynamics and Outcome of X Chromosome Pairing Events during ES Cell Differentiation

Osamu Masui; Isabelle Bonnet; Patricia Le Baccon; Isabel Brito; Tim Pollex; Niall Murphy; Philippe Hupé; Emmanuel Barillot; Andrew S. Belmont; Edith Heard

Random X inactivation represents a paradigm for monoallelic gene regulation during early ES cell differentiation. In mice, the choice of X chromosome to inactivate in XX cells is ensured by monoallelic regulation of Xist RNA via its antisense transcription unit Tsix/Xite. Homologous pairing events have been proposed to underlie asymmetric Tsix expression, but direct evidence has been lacking owing to their dynamic and transient nature. Here we investigate the live-cell dynamics and outcome of Tsix pairing in differentiating mouse ES cells. We find an overall increase in genome dynamics including the Xics during early differentiation. During pairing, however, Xic loci show markedly reduced movements. Upon separation, Tsix expression becomes transiently monoallelic, providing a window of opportunity for monoallelic Xist upregulation. Our findings reveal the spatiotemporal choreography of the X chromosomes during early differentiation and indicate a direct role for pairing in facilitating symmetry-breaking and monoallelic regulation of Xist during random X inactivation.


Nucleic Acids Research | 2005

Detection of single DNA molecules by multicolor quantum-dot end-labeling

Aurélien Crut; Bénédicte Géron‐Landre; Isabelle Bonnet; Stéphane Bonneau; Pierre Desbiolles; Christophe Escudé

Observation of DNA–protein interactions by single molecule fluorescence microscopy is usually performed by using fluorescent DNA binding agents. However, such dyes have been shown to induce cleavage of the DNA molecule and perturb its interactions with proteins. A new method for the detection of surface-attached DNA molecules by fluorescence microscopy is introduced in this paper. Biotin- and/or digoxigenin-modified DNA fragments are covalently linked at both extremities of a DNA molecule via sequence-specific hybridization and ligation. After the modified DNA molecules have been stretched on a glass surface, their ends are visualized by multicolor fluorescence microscopy using conjugated quantum dots (QD). We demonstrate that under carefully selected conditions, the position and orientation of individual DNA molecules can be inferred with good efficiency from the QD fluorescence signals alone. This is achieved by selecting QD pairs that have the distance and direction expected for the combed DNA molecules. Direct observation of single DNA molecules in the absence of DNA staining agent opens new possibilities in the fundamental study of DNA–protein interactions. This work also documents new possibilities regarding the use of QD for nucleic acid detection and analysis.


Journal of the Royal Society Interface | 2012

Mechanical state, material properties and continuous description of an epithelial tissue.

Isabelle Bonnet; Philippe Marcq; Floris Bosveld; Luc Fetler; Yohanns Bellaïche; François Graner

During development, epithelial tissues undergo extensive morphogenesis based on coordinated changes of cell shape and position over time. Continuum mechanics describes tissue mechanical state and shape changes in terms of strain and stress. It accounts for individual cell properties using only a few spatially averaged material parameters. To determine the mechanical state and parameters in the Drosophila pupa dorsal thorax epithelium, we severed in vivo the adherens junctions around a disc-shaped domain comprising typically a hundred cells. This enabled a direct measurement of the strain along different orientations at once. The amplitude and the anisotropy of the strain increased during development. We also measured the stress-to-viscosity ratio and similarly found an increase in amplitude and anisotropy. The relaxation time was of the order of 10 s. We propose a space–time, continuous model of the relaxation. Good agreement with experimental data validates the description of the epithelial domain as a continuous, linear, visco-elastic material. We discuss the relevant time and length scales. Another material parameter, the ratio of external friction to internal viscosity, is estimated by fitting the initial velocity profile. Together, our results contribute to quantify forces and displacements, and their time evolution, during morphogenesis.


European Physical Journal E | 2013

Comparative study of non-invasive force and stress inference methods in tissue

Shuji Ishihara; Kaoru Sugimura; Simon Cox; Isabelle Bonnet; Yohanns Bellaïche; François Graner

In the course of animal development, the shape of tissue emerges in part from mechanical and biochemical interactions between cells. Measuring stress in tissue is essential for studying morphogenesis and its physical constraints. For that purpose, a possible new approach is force inference (up to a single prefactor) from cell shapes and connectivity. It is non-invasive and can provide space-time maps of stress in a whole tissue, unlike existing methods. To validate this approach, three force-inference methods, which differ in their approach of treating indefiniteness in an inverse problem between cell shapes and forces, were compared. Tests using two artificial and two experimental data sets consistently indicate that our Bayesian force inference, by which cell-junction tensions and cell pressures are simultaneously estimated, performs best in terms of accuracy and robustness. Moreover, by measuring the stress anisotropy and relaxation, we cross-validated the force inference and the global annular ablation of tissue, each of which relies on different prefactors. A practical choice of force-inference methods in different systems of interest is discussed.Graphical abstract


Proceedings of the National Academy of Sciences of the United States of America | 2015

Architecture and migration of an epithelium on a cylindrical wire

Hannah Yevick; Guillaume Duclos; Isabelle Bonnet; Pascal Silberzan

Significance Cell sheets often organize in tubular structures, for example, in the kidney. Also, cells from epithelial tumors are known to wrap around vessels or muscle fibers as they migrate collectively. By plating cells on thin glass wires, we mimic these physiological conditions in vitro and show that high curvature favors cell detachment at the front edge. This switch from collective to individual migration may reproduce features often observed in cancer invasion. High curvature also induces a circumferential organization of the actin cytoskeleton reminiscent of in vivo embryonic morphogenesis situations where tissues develop on a cylindrical template. Finally, monolayer migration is halted at submicron radii, and the tissue reconfigures into hollow cysts at its leading tip. In a wide range of epithelial tissues such as kidney tubules or breast acini, cells organize into bidimensional monolayers experiencing an out-of-plane curvature. Cancer cells can also migrate collectively from epithelial tumors by wrapping around vessels or muscle fibers. However, in vitro experiments dealing with epithelia are mostly performed on flat substrates, neglecting this out-of-plane component. In this paper, we study the development and migration of epithelial tissues on glass wires of well-defined radii varying from less than 1 µm up to 85 µm. To uncouple the effect of out-of-plane curvature from the lateral confinement experienced by the cells in these geometries, we compare our results to experiments performed on narrow adhesive tracks. Because of lateral confinement, the velocity of collective migration increases for radii smaller than typically 20 µm. The monolayer dynamics is then controlled by front-edge protrusions. Conversely, high curvature is identified as the inducer of frequent cell detachments at the front edge, a phenotype reminiscent of the Epithelial−Mesenchymal Transition. High curvature also induces a circumferential alignment of the actin cytoskeleton, stabilized by multiple focal adhesions. This organization of the cytoskeleton is reminiscent of in vivo situations such as the development of the trachea of the Drosophila embryo. Finally, submicron radii halt the monolayer, which then reconfigures into hollow cysts.


Development | 2016

Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

Floris Bosveld; Boris Guirao; Zhimin Wang; Mathieu Rivière; Isabelle Bonnet; François Graner; Yohanns Bellaïche

Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions. Highlighted article: Time-lapse imaging studies to follow cell behavior and dynamics in Drosophila epithelia reveal mechanical roles for tumor suppressors and proto-oncogenes.


Nature Cell Biology | 2015

Microtubule-driven nuclear rotations promote meiotic chromosome dynamics.

Nicolas Christophorou; Thomas Rubin; Isabelle Bonnet; Tristan Piolot; Marion Arnaud; Jean-René Huynh

At the onset of meiosis, each chromosome needs to find its homologue and pair to ensure proper segregation. In Drosophila, pairing occurs during the mitotic cycles preceding meiosis. Here we show that germ cell nuclei undergo marked movements during this developmental window. We demonstrate that microtubules and Dynein are driving nuclear rotations and are required for centromere pairing and clustering. We further found that Klaroid (SUN) and Klarsicht (KASH) co-localize with centromeres at the nuclear envelope and are required for proper chromosome motions and pairing. We identified Mud (NuMA in vertebrates) as co-localizing with centromeres, Klarsicht and Klaroid. Mud is also required to maintain the integrity of the nuclear envelope and for the correct assembly of the synaptonemal complex. Our findings reveal a mechanism for chromosome pairing in Drosophila, and indicate that microtubules, centrosomes and associated proteins play a crucial role in the dynamic organization of chromosomes inside the nucleus.


European Physical Journal E | 2011

The diffusion constant of a labeled protein sliding along DNA

Isabelle Bonnet; Pierre Desbiolles

Abstract.Long ago inferred by biochemists, the linear diffusion of proteins along DNA has recently been observed at a single-molecule level using fluorescence microscopy. This imaging technique requires labeling the protein of interest with a fluorophore, usually an organic nanosized dye that is not supposed to impact the dynamics of the protein. Yet individual proteins can also be tracked using much larger labels, like quantum dots or beads. We investigate here the impact of such a large label on the protein diffusion along DNA. Solving a Fokker-Planck equation, we estimate the diffusion constant of a protein-label complex diffusing in a periodic potential that mimics the DNA-protein interaction, the link between the protein and the label being modeled as a Hookean spring. Our results indicate that the diffusion constant can generally be calculated by considering that the motion of the protein in the DNA potential is decoupled from the Brownian motion of the label. Our conclusions are in good agreement with the experimental results we obtained with the restriction enzyme EcoRV, assuming a rotation-coupled diffusion of the enzyme along DNA.

Collaboration


Dive into the Isabelle Bonnet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Desbiolles

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Duclos

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hannah Yevick

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge