Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Chenier is active.

Publication


Featured researches published by Isabelle Chenier.


Diabetes | 2008

Attenuation of Interstitial Fibrosis and Tubular Apoptosis in db/db Transgenic Mice Overexpressing Catalase in Renal Proximal Tubular Cells

Marie-Luise Brezniceanu; Fang Liu; Chih-Chang Wei; Isabelle Chenier; Nicolas Godin; Shao-Ling Zhang; János G. Filep; Julie R. Ingelfinger; John S.D. Chan

OBJECTIVE—The present study investigated the relationships between reactive oxygen species (ROS), interstitial fibrosis, and renal proximal tubular cell (RPTC) apoptosis in type 2 diabetic db/db mice and in db/db transgenic (Tg) mice overexpressing rat catalase (rCAT) in their RPTCs (db/db rCAT-Tg). RESEARCH DESIGN AND METHODS—Blood pressure, blood glucose, and albuminuria were monitored for up to 5 months. Kidneys were processed for histology and apoptosis studies (terminal transferase-mediated dUTP nick-end labeling or immunostaining for active caspase-3 and Bax). Real-time quantitative PCR assays were used to quantify angiotensinogen (ANG), p53, and Bax mRNA levels. RESULTS—db/db mice developed obesity, hyperglycemia, hypertension, and albuminuria. In contrast, db/db rCAT-Tg mice became obese and hyperglycemic but had normal blood pressure and attenuated albuminuria compared with db/db mice. Kidneys from db/db mice displayed progressive glomerular hypertrophy, glomerulosclerosis, interstitial fibrosis, and tubular apoptosis and increased expression of collagen type IV, Bax, and active caspase-3, as well as increased ROS production. These changes, except glomerular hypertrophy, were markedly attenuated in kidneys of db/db rCAT-Tg mice. Furthermore, ANG, p53, and Bax mRNA expression was increased in renal proximal tubules of db/db mice but not of db/db rCAT-Tg mice. CONCLUSIONS—Our results indicate a crucial role for intra-renal ROS in the progression of hypertension, albuminuria, interstitial fibrosis, and tubular apoptosis in type 2 diabetes and demonstrate the beneficial effects of suppressing ROS formation.


Journal of The American Society of Nephrology | 2008

Overexpression of Angiotensinogen Increases Tubular Apoptosis in Diabetes

Fang Liu; Marie-Luise Brezniceanu; Chih-Chang Wei; Isabelle Chenier; Sébastien Sachetelli; Shao-Ling Zhang; János G. Filep; Julie R. Ingelfinger; John S.D. Chan

The intrarenal renin-angiotensin system (RAS) plays an important role in the progression of diabetic nephropathy. We have previously reported that mice overexpressing angiotensinogen in renal proximal tubular cells (RPTC) develop hypertension, albuminuria, and renal injury. Here, we investigated whether activation of the intrarenal RAS contributes to apoptosis of RPTC in diabetes. Induction of diabetes with streptozotocin in these transgenic mice led to significant increases in BP, albuminuria, RPTC apoptosis, and proapoptotic gene expression compared with diabetic nontransgenic littermates. Insulin and/or RAS blockers markedly attenuated these changes. Hydralazine prevented hypertension but not albuminuria, RPTC apoptosis, or proapoptotic gene expression. In vitro, high-glucose medium significantly increased apoptosis and caspase-3 activity in rat immortalized RPTC overexpressing angiotensinogen compared with control cells, and these changes were prevented by insulin and/or RAS blockers. In conclusion, intrarenal RAS activation and high glucose may act in concert to increase tubular apoptosis in diabetes, independent of systemic hypertension.


Journal of The American Society of Nephrology | 2008

Maternal diabetes modulates renal morphogenesis in offspring

Stella Tran; Yun Wen Chen; Isabelle Chenier; John S.D. Chan; Susan E. Quaggin; Marie Josée Hébert; Julie R. Ingelfinger; Shao-Ling Zhang

Maternal diabetes leads to an adverse in utero environment, but whether maternal diabetes impairs nephrogenesis is unknown. Diabetes was induced with streptozotocin in pregnant Hoxb7-green fluorescence protein mice at embryonic day 13, and the offspring were examined at several time points after birth. Compared with offspring of nondiabetic controls, offspring of diabetic mice had lower body weight, body size, kidney weight, and nephron number. The observed renal dysmorphogenesis may be the result of increased apoptosis, because immunohistochemical analysis revealed significantly more apoptotic podocytes as well as increased active caspase-3 immunostaining in the renal tubules compared with control mice. Regarding potential mediators of these differences, offspring of diabetic mice had increased expression of intrarenal angiotensinogen and renin mRNA, upregulation of NF-kappaB isoforms p50 and p65, and activation of the NF-kappaB pathway. In conclusion, maternal diabetes impairs nephrogenesis, possibly via enhanced intrarenal activation of the renin-angiotensin system and NF-kappaB signaling.


Kidney International | 2010

Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice

Nicolas Godin; Fang Liu; Garnet J. Lau; Marie-Luise Brezniceanu; Isabelle Chenier; János G. Filep; Julie R. Ingelfinger; Shao-Ling Zhang; John S.D. Chan

Transgenic mice that overexpress angiotensinogen, the sole precursor of angiotensins, in their renal proximal tubular cells develop hypertension, albuminuria, and tubular apoptosis. These pathological changes are due to enhanced generation of reactive oxygen species in the proximal tubule cells. Here, we determined whether overexpression of catalase to decrease oxidant injury in the proximal tubular cells could reverse these abnormalities. Double-transgenic mice specifically overexpressing angiotensinogen and catalase in their renal proximal tubular cells were created by cross-breeding the single transgenics. Non-transgenic littermates served as controls. Overexpression of catalase prevented hypertension, albuminuria, tubulointerstitial fibrosis, and tubular apoptosis in the angiotensinogen transgenic mice. Furthermore, the double transgenics had lower reactive oxygen species generation and reduced pro-fibrotic and apoptotic gene expression in the renal proximal tubular cells. Renal angiotensin converting enzyme-2 expression and urinary angiotensin 1-7 levels were downregulated in the single but normal in the double-transgenic mice. Thus, we suggest that the intrarenal renin-angiotensin system and reactive oxygen species generation have an important role in the development of hypertension and renal injury.


Journal of The American Society of Nephrology | 2010

Reactive Oxygen Species Promote Caspase-12 Expression and Tubular Apoptosis in Diabetic Nephropathy

Marie-Luise Brezniceanu; Cara J. Lau; Nicolas Godin; Isabelle Chenier; Alain Duclos; Jean Ethier; János G. Filep; Julie R. Ingelfinger; Shao-Ling Zhang; John S.D. Chan

Apoptosis of tubular epithelial cells contributes to the tubular atrophy that accompanies diabetic nephropathy. Reactive oxygen species (ROS) promote tubular apoptosis, but the mechanisms by which this occurs are incompletely understood. Here, we sought proapoptotic genes that ROS differentially upregulate in renal proximal tubular cells of diabetic (db/db) mice. We performed microarray analysis using total RNA from freshly isolated renal proximal tubules of nondiabetic, diabetic, and diabetic transgenic mice overexpressing catalase in the proximal tubule (thereby attenuating ROS). We observed greater expression of caspase-12 in the proximal tubules of the diabetic mice compared with the nondiabetic and diabetic transgenic mice. Quantitative PCR and immunohistochemistry confirmed the enhanced expression of caspase-12, as well as members of the endoplasmic reticulum stress-induced apoptotic pathway. Ex vivo, albumin induced caspase-12 activity and expression (protein and mRNA) and mRNA expression of the CCAT/enhancer-binding protein homologous protein in freshly isolated wild-type proximal tubules but not in catalase-overexpressing proximal tubules. In vitro, albumin stimulated activity of both caspase-12 and caspase-3 as well as expression of caspase-12 and CCAT/enhancer-binding protein homologous protein in a human proximal tubule cell line (HK-2). The free radical scavenger tiron inhibited these effects. Furthermore, knockdown of caspase-12 with small interfering RNA reduced albumin-induced apoptosis in HK-2 cells. Taken together, these studies demonstrate that albuminuria may induce tubular apoptosis through generation of ROS and the subsequent expression and activation of endoplasmic reticulum stress genes in the diabetic kidney.


Kidney International | 2009

Apocynin attenuates tubular apoptosis and tubulointerstitial fibrosis in transgenic mice independent of hypertension.

Fang Liu; Chih-Chang Wei; Shyh-Jong Wu; Isabelle Chenier; Shao-Ling Zhang; János G. Filep; Julie R. Ingelfinger; John S.D. Chan

Angiotensin II stimulates the formation of reactive oxygen species by increased NADPH oxidase activity, which contributes to proapoptotic and profibrotic mechanisms critical in renal injury. Here we determine if apocynin, an inhibitor of NADPH oxidase, interferes with the action of the intrarenal renin-angiotensin system to minimize the progression of renal disease. Transgenic mice that overexpress rat angiotensinogen in their proximal tubule cells were given either apocynin, perindopril, or hydralazine while untreated or apocynin-treated non-transgenic littermates served as controls. Untreated transgenic mice had significant elevations of their systolic blood pressure, albuminuria, reactive oxygen species production, NADPH oxidase activity, tubular apoptosis, active caspase-3, Bax, transforming growth factor-beta1, plasminogen activator inhibitor-1, extracellular matrix proteins, collagen type IV, and phosphorylated p47phox expression compared to untreated non-transgenic mice. Apocynin and perindopril blunted these changes; however, apocynin had no effect on the systolic blood pressure whereas hydralazine prevented hypertension and tubulointerstitial fibrosis but not proximal tubule cell apoptosis. Our study shows that the intrarenal renin-angiotensin system stimulates proximal tubule cell apoptosis and tubulointerstitial fibrosis, in part, by enhanced NADPH oxidase activity and reactive oxygen species generation independent of systemic hypertension.


Hypertension | 2006

Development of Hypertension and Kidney Hypertrophy in Transgenic Mice Overexpressing ARAP1 Gene in the Kidney

Deng Fu Guo; Isabelle Chenier; Julie L. Lavoie; John S.D. Chan; Pavel Hamet; Johanne Tremblay; Xiang Mei Chen; Donna H. Wang; Tadashi Inagami

Angiotensin II regulates blood pressure via activation of the type 1 receptor. We previously identified a novel angiotensin II type 1 receptor–associated protein and demonstrated that it promotes receptor recycling to the plasma membrane. To delineate the pathophysiological function of the ARAP1 in the kidneys, we generated transgenic mice that overexpress rat ARAP1 cDNA specifically in proximal tubules and tested the hypothesis that proximal tubule-specific overexpression of ARAP1 causes hypertension. Two lines of male transgenic mice, 650 and 670, displayed kidney-specific transgene expression. Systolic blood pressure was significantly elevated by ≈20 to 25 mm Hg in these lines of mice at 20 weeks of age compared with their nontransgenic litter mates. Urine volume, but not water intake, was significantly decreased in both lines compared with nontransgenic controls. The kidney/body weight ratio was significantly increased in both lines compared with their nontransgenic litter mates at 12 and 20 weeks of age. In contrast, no difference was observed in the ratio of brain, spleen, heart, and testis to body weight between male transgenic and nontransgenic animals. Inhibitions of the renin–angiotensin system completely normalized the systolic blood pressure of transgenic mice. Moreover, low salt intake prevented the development of hypertension, whereas high salt intake exacerbated the increase in blood pressure in transgenic mice. Therefore, our data show that proximal tubule-specific overexpression of ARAP1 leads to hypertension, suggesting that renal ARAP1 plays an important role in the regulation of blood pressure and renal function via activation of the intrarenal renin–angiotensin system.


American Journal of Physiology-renal Physiology | 2012

Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice

Chao-Sheng Lo; Fang Liu; Yixuan Shi; Hasna Maachi; Isabelle Chenier; Nicolas Godin; János G. Filep; Julie R. Ingelfinger; Shao-Ling Zhang; John S.D. Chan

We investigated the effects of dual renin-angiotensin system (RAS) blockade on angiotensin-converting enzyme-2 (Ace2) expression, hypertension, and renal proximal tubular cell (RPTC) apoptosis in type 1 diabetic Akita angiotensinogen (Agt)-transgenic (Tg) mice that specifically overexpress Agt in their RPTCs. Adult (11 wk old) male Akita and Akita Agt-Tg mice were treated with two RAS blockers (ANG II receptor type 1 blocker losartan, 30 mg·kg(-1)·day(-1)) and angiotensin-converting enzyme (ACE) inhibitor perindopril (4 mg·kg(-1)·day(-1)) in drinking water. Same-age non-Akita littermates and Agt-Tg mice served as controls. Blood pressure, blood glucose, and albuminuria were monitored weekly. The animals were euthanized at age 16 wk. The left kidneys were processed for immunohistochemistry and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess gene and protein expression. Urinary ANG II and ANG 1-7 were quantified by ELISA. RAS blockade normalized renal Ace2 expression and urinary ANG 1-7 levels (both of which were low in untreated Akita and Akita Agt-Tg), prevented hypertension, albuminuria, tubulointerstitial fibrosis and tubular apoptosis, and inhibited profibrotic and proapoptotic gene expression in RPTCs of Akita and Akita Agt-Tg mice compared with non-Akita controls. Our results demonstrate the effectiveness of RAS blockade in preventing intrarenal RAS activation, hypertension, and nephropathy progression in diabetes and support the important role of intrarenal Ace2 expression in modulating hypertension and renal injury in diabetes.


Experimental Diabetes Research | 2011

Angiotensin II Type II Receptor Deficiency Accelerates the Development of Nephropathy in Type I Diabetes via Oxidative Stress and ACE2

Shiao Ying Chang; Yun Wen Chen; Isabelle Chenier; Stella Tran; Shao-Ling Zhang

Since the functional role(s) of angiotensin II (Ang II) type II receptor (AT2R) in type I diabetes is unknown, we hypothesized that AT2R is involved in decreasing the effects of type I diabetes on the kidneys. We induced diabetes with low-dose streptozotocin (STZ) in both AT2R knockout (AT2RKO) and wild-type (WT) male mice aged 12 weeks and followed them for 4 weeks. Three subgroups nondiabetic, diabetic, and insulin-treated diabetic (Rx insulin implant) were studied. Systolic blood pressure (SBP), physiological parameters, glomerular filtration rate (GFR), renal morphology, gene expression, and apoptosis were assessed. After 4 weeks of diabetes, compared to WT controls, AT2RKO mice clearly developed features of early diabetic nephropathy (DN), such as renal hypertrophy, tubular apoptosis, and progressive extracellular matrix (ECM) protein accumulation as well as increased GFR. AT2RKO mice presented hypertension unaffected by diabetes. Renal oxidative stress (measured as heme oxygenase 1 (HO-1) gene expression and reactive oxygen species (ROS) generation) and intrarenal renin angiotensin system components, such as angiotensinogen (Agt), AT1R, and angiotensin-converting enzyme (ACE) gene expression, were augmented whereas angiotensin-converting enzyme2 (ACE2) gene expression was decreased in renal proximal tubules (RPTs) of AT2RKO mice. The renal changes noted above were significantly enhanced in diabetic AT2RKO mice but partially attenuated in insulin-treated diabetic WT and AT2RKO mice. In conclusion, AT2R deficiency accelerates the development of DN, which appears to be mediated, at least in part, via heightened oxidative stress and ACE/ACE2 ratio in RPTs.


American Journal of Physiology-renal Physiology | 2013

Overexpression of catalase prevents hypertension and tubulointerstitial fibrosis and normalization of renal angiotensin-converting enzyme-2 expression in Akita mice

Yixuan Shi; Chao-Sheng Lo; Isabelle Chenier; Hasna Maachi; János G. Filep; Julie R. Ingelfinger; Shao-Ling Zhang; John S.D. Chan

We investigated the relationship among oxidative stress, hypertension, renal injury, and angiotensin-converting enzyme-2 (ACE2) expression in type 1 diabetic Akita mice. Blood glucose, blood pressure, and albuminuria were monitored for up to 5 mo in adult male Akita and Akita catalase (Cat) transgenic (Tg) mice specifically overexpressing Cat, a key antioxidant enzyme in their renal proximal tubular cells (RPTCs). Same-age non-Akita littermates and Cat-Tg mice served as controls. In separate studies, adult male Akita mice (14 wk) were treated with ANG 1-7 (500 μg·kg⁻¹·day⁻¹ sc) ± A-779, an antagonist of the Mas receptor (10 mg·kg⁻¹·day⁻¹ sc), and euthanized at the age of 18 wk. The left kidneys were processed for histology and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess protein and gene expression. Urinary angiotensinogen (AGT), angiotensin II (ANG II), and ANG 1-7 were quantified by specific ELISAs. Overexpression of Cat attenuated renal oxidative stress; prevented hypertension; normalized RPTC ACE2 expression and urinary ANG 1-7 levels (both were low in Akita mice); ameliorated glomerular filtration rate, albuminuria, kidney hypertrophy, tubulointerstitial fibrosis, and tubular apoptosis; and suppressed profibrotic and proapoptotic gene expression in RPTCs of Akita Cat-Tg mice compared with Akita mice. Furthermore, daily administration of ANG 1-7 normalized systemic hypertension in Akita mice, which was reversed by A-779. These data demonstrate that Cat overexpression prevents hypertension and progression of nephropathy and highlight the importance of intrarenal oxidative stress and ACE2 expression contributing to hypertension and renal injury in diabetes.

Collaboration


Dive into the Isabelle Chenier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S.D. Chan

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Chao-Sheng Lo

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yixuan Shi

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Fang Liu

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Stella Tran

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Xin-Ping Zhao

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge