Isabelle Coste
Schering-Plough
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isabelle Coste.
Journal of Immunology | 2006
Bruno Salaun; Isabelle Coste; Marie-Clotilde Rissoan; Serge Lebecque; Toufic Renno
TLRs function as molecular sensors to detect pathogen-derived products and trigger protective responses ranging from secretion of cytokines that increase the resistance of infected cells and chemokines that recruit immune cells to cell death that limits microbe spreading. Viral dsRNA participate in virus-infected cell apoptosis, but the signaling pathway involved remains unclear. In this study we show that synthetic dsRNA induces apoptosis of human breast cancer cells in a TLR3-dependent manner, which involves the molecular adaptor Toll/IL-1R domain-containing adapter inducing IFN-β and type I IFN autocrine signaling, but occurs independently of the dsRNA-activated kinase. Moreover, detailed molecular analysis of dsRNA-induced cell death established the proapoptotic role of IL-1R-associated kinase-4 and NF-κB downstream of TLR3 as well as the activation of the extrinsic caspases. The direct proapoptotic activity of endogenous human TLR3 expressed by cancerous cells reveals a novel aspect of the multiple-faced TLR biology, which may open new clinical prospects for using TLR3 agonists as cytotoxic agents in selected cancers.
Molecular and Cellular Biology | 2005
Adrien Kissenpfennig; Smina Ait-Yahia; Valérie Clair-Moninot; Hella Stössel; Edgar Badell; Yann Bordat; Joanne Pooley; Thierry Lang; Eric Prina; Isabelle Coste; Olivia Gresser; Toufic Renno; Nathalie Winter; Geneviève Milon; Ken Shortman; Nikolaus Romani; Serge Lebecque; Bernard Malissen; Sem Saeland; Patrice Douillard
ABSTRACT Langerin is a C-type lectin expressed by a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin is a cell surface receptor that induces the formation of an LC-specific organelle, the Birbeck granule (BG). We generated a langerin − / − mouse on a C57BL/6 background which did not display any macroscopic aberrant development. In the absence of langerin, LC were detected in normal numbers in the epidermis but the cells lacked BG. LC of langerin − / − mice did not present other phenotypic alterations compared to wild-type littermates. Functionally, the langerin − / − LC were able to capture antigen, to migrate towards skin draining lymph nodes, and to undergo phenotypic maturation. In addition, langerin − / − mice were not impaired in their capacity to process native OVA protein for I-A b -restricted presentation to CD4+ T lymphocytes or for H-2K b -restricted cross-presentation to CD8+ T lymphocytes. langerin − / − mice inoculated with mannosylated or skin-tropic microorganisms did not display an altered pathogen susceptibility. Finally, chemical mutagenesis resulted in a similar rate of skin tumor development in langerin − / − and wild-type mice. Overall, our data indicate that langerin and BG are dispensable for a number of LC functions. The langerin − / − C57BL/6 mouse should be a valuable model for further functional exploration of langerin and the role of BG.
Journal of Clinical Investigation | 2010
Isabelle Coste; Katy Le Corf; Alain Kfoury; Isabelle Hmitou; Sabine Druillennec; Pierre Hainaut; Alain Eychène; Serge Lebecque; Toufic Renno
Accumulating evidence points to inflammation as a promoter of carcinogenesis. MyD88 is an adaptor molecule in TLR and IL-1R signaling that was recently implicated in tumorigenesis through proinflammatory mechanisms. Here we have shown that MyD88 is also required in a cell-autonomous fashion for RAS-mediated carcinogenesis in mice in vivo and for MAPK activation and transformation in vitro. Mechanistically, MyD88 bound to the key MAPK, Erk, and prevented its inactivation by its phosphatase, MKP3, thereby amplifying the activation of the canonical RAS pathway. The relevance of this mechanism to human neoplasia was suggested by the finding that MyD88 was overexpressed and interacted with activated Erk in primary human cancer tissues. Collectively, these results show that in addition to its role in inflammation, MyD88 plays what we believe to be a crucial direct role in RAS signaling, cell-cycle control, and cell transformation.
Journal of Immunology | 2002
Toufic Renno; Anne Wilson; Caroline Dunkel; Isabelle Coste; Karine Maisnier-Patin; Amélie Benoit de Coignac; Jean-Pierre Aubry; Rosemary K. Lees; Jean-Yves Bonnefoy; H. Robson MacDonald; Jean-François Gauchat
We have previously identified a mAb that binds to a molecule expressed preferentially on the surface of cycling thymocytes. In this study the molecule recognized by this mAb has been identified in the mouse as CD147 (basigin) by expression cloning. We show that CD147 expression correlates with cycling of immature thymocytes even in the absence of TCRβ selection and that ligation of this molecule on immature fetal thymocytes inhibits their further development into mature T cells.
Journal of Immunology | 2001
Isabelle Miconnet; Isabelle Coste; Friedrich Beermann; Jean-François Haeuw; Jean-Charles Cerottini; Jean-Yves Bonnefoy; Pedro Romero; Toufic Renno
The recent identification of tumor Ags as potential vaccines has prompted the search for efficient adjuvants and delivery systems, especially in the case of peptide-based vaccination protocols. Here, we investigated the adjuvant potential of the recombinant 40-kDa outer membrane protein of Klebsellia pneumoniae (P40) for specific CTL induction. We studied the CTL response induced in HLA-A*0201/Kb transgenic mice immunized with peptides derived from two melanoma-associated differentiation Ags, the HLA-A*0201-restricted decapeptide Melan-A26–35 substituted at position 2 and the Kb-restricted tyrosinase-related protein 2181–188 T cell epitope. We found that both peptides are able to generate a specific CTL response when mixed with the protein in the absence of conventional adjuvant. This CTL response is a function of the amount of P40 used for immunization. Moreover, the CTL response generated against the tyrosinase-related protein 2181–188 peptide in presence of P40 is associated with tumor protection in two different experimental models and is independent of the presence of CD4+ T lymphocytes. Thus, the recombinant bacterial protein P40 functions as a potent immunological adjuvant for specific CTL induction.
Journal of the National Cancer Institute | 2013
Alain Kfoury; Katy Le Corf; Rana El Sabeh; Alexandra Journeaux; Bassam Badran; Nader Hussein; Serge Lebecque; Serge N. Manié; Toufic Renno; Isabelle Coste
BACKGROUND MyD88 is an adaptor molecule in Toll-like receptor and interleukin 1 receptor signaling implicated in tumorigenesis through proinflammatory mechanisms. We have recently reported that MyD88 also directly promotes optimal activation of the Ras/Erk pathway. Here we investigate MyD88 implication in the maintenance of the transformation of Ras-dependent tumors. METHODS RNA interference was used to inhibit MyD88 expression in the colon cancer cell lines HCT116 and LS513. Apoptosis, DNA damage, p53 function, ERCC1 levels, and Ras and inflammatory signaling pathways were analyzed. Using in vitro assays and xenotransplantation in nude mice (five per group), HCT116 tumor growth was assessed following MyD88 knockdown in presence or absence of chemotherapy. RESULTS MyD88 exerts antiapoptotic functions in colon cancer cells via the Ras/Erk, but not the NF-κB, pathway. MyD88 inhibition leads to defective ERCC1-dependent DNA repair and to accumulation of DNA damage, resulting in cancer cell death via p53. Furthermore, we show that knocking down MyD88 sensitizes cancer cells to genotoxic agents such as platinum salts in vitro and in vivo. Indeed, HCT116 tumor growth following treatment with a combination of suboptimal MyD88 inhibition and suboptimal doses of cisplatin (fold tumor increase = 5.4 ± 1.6) was statistically significantly reduced in comparison to treatment with doxycycline alone (12.4 ± 3.1) or with cisplatin alone (12.5 ± 2.6) (P = .005 for both, one-sided Student t test). CONCLUSIONS Collectively, these results indicate a novel and original link between inflammation, DNA repair, and cancer, and provide further rationale for MyD88 as a potential therapeutic target in Ras-dependent cancers, in the context of concomitant genotoxic chemotherapy.
Current Opinion in Oncology | 2014
Alain Kfoury; François Virard; Toufic Renno; Isabelle Coste
Purpose of review Inflammation is emerging as a new hallmark of cancer, and the toll-like receptor and interleukin-1 receptor adaptor molecule MyD88 has been linked to tumorigenesis. The purpose of this review is to give a brief overview of the latest advances in understanding the complexity of MyD88 implication in tumorigenesis. Recent findings MyD88 is shown to play a protumorigenic role through two mechanisms. First, it activates the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway in the hematopoietic compartment and in tumor cells, inducing an inflammatory environment favorable to carcinogenesis. Second, it plays a cell-autonomous role in Ras signaling and transformation, independently of its role in inflammatory signaling. MyD88 mediates the optimal activation of the Ras/extracellular signal-regulated kinase (ERK) pathway by binding to ERK and protecting it from dephosphorylation. This optimal activation of the Ras pathway is essential for the expression of important DNA repair enzymes, allowing cancer cells to efficiently repair damaged DNA. MyD88 is also shown in certain cases to play an antitumoral role through modulation of the immune response Summary These findings present a new dual function model for MyD88 implication in carcinogenesis making it a potential therapeutic target in cancer.
Oncotarget | 2016
Vincent Picco; Isabelle Coste; Marie-Josèphe Giraud-Panis; Toufic Renno; Eric Gilson; Gilles Pagès
Telomere stability is a hallmark of immortalized cells, including cancer cells. While the telomere length is maintained in most cases by the telomerase, the activity of a protein complex called Shelterin is required to protect telomeres against unsuitable activation of the DNA damage response pathway. Within this complex, telomeric repeat binding factor 2 (TRF2) plays an essential role by blocking the ataxia telangiectasia-mutated protein (ATM) signaling pathway at telomeres and preventing chromosome end fusion. We showed that TRF2 was phosphorylated in vitro and in vivo on serine 323 by extracellular signal-regulated kinase (ERK1/2) in both normal and cancer cells. Moreover, TRF2 and activated ERK1/2 unexpectedly interacted in the cytoplasm of tumor cells and human tumor tissues. The expression of non-phosphorylatable forms of TRF2 in melanoma cells induced the DNA damage response, leading to growth arrest and tumor reversion. These findings revealed that the telomere stability is under direct control of one of the major pro-oncogenic signaling pathways (RAS/RAF/MEK/ERK) via TRF2 phosphorylation.
bioRxiv | 2018
Rana El Sabeh; Melanie Bonnet; Katy Le Corf; Kevin S. Lang; Alain Kfoury; Bassam Badran; Nader Hussein; François Virard; Isabelle Treilleux; Muriel Le Romancer; Serge Lebecque; Serge N. Manié; Isabelle Coste; Toufic Renno
Most Toll-like receptors and IL-1/IL-18 receptors activate a signaling cascade via the adaptor molecule MyD88, resulting in NF-κB activation and inflammatory cytokine and chemokine production. Females are less susceptible than males to inflammatory conditions, presumably due to protection by estrogen. Here we show that MyD88 interacts with a methylated, cytoplasmic form of estrogen receptor-alpha (methER-α). This interaction is required for NF-κB transcriptional activity and pro-inflammatory cytokine production, and is dissociated by estrogen. Importantly, we show a strong gender segregation in gametogenic reproductive organs, with MyD88/methER-α interactions found in testicular tissues and in ovarian tissues from menopausal women, but not in ovaries from women age 49 and less -suggesting a role for estrogen in disrupting this complex in situ. Collectively, our results indicate that the formation of MyD88/methER-α complexes during inflammatory signaling and their disruption by estrogen may represent a mechanism that contributes to gender bias in inflammatory responses.
Blood | 2001
Isabelle Coste; Jean-François Gauchat; Anne Wilson; Shozo Izui; Pascale Jeannin; Yves Delneste; H. Robson MacDonald; Jean-Yves Bonnefoy; Toufic Renno