Isabelle Gross
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isabelle Gross.
Cancer Research | 2009
Xiangjun Meng; Mili L. Leyva; Marjorie Jenny; Isabelle Gross; Samir Benosman; Bastien Fricker; Sébastien Harlepp; Pascal Hébraud; Anne Boos; Pauline Wlosik; Pierre Bischoff; Claude B. Sirlin; Michel Pfeffer; Jean-Philippe Loeffler; Christian Gaiddon
Cisplatin-derived anticancer therapy has been used for three decades despite its side effects. Other types of organometallic complexes, namely, some ruthenium-derived compounds (RDC), which would display cytotoxicity through different modes of action, might represent alternative therapeutic agents. We have studied both in vitro and in vivo the biological properties of RDC11, one of the most active compounds of a new class of RDCs that contain a covalent bond between the ruthenium atom and a carbon. We showed that RDC11 inhibited the growth of various tumors implanted in mice more efficiently than cisplatin. Importantly, in striking contrast with cisplatin, RDC11 did not cause severe side effects on the liver, kidneys, or the neuronal sensory system. We analyzed the mode of action of RDC11 and showed that RDC11 interacted poorly with DNA and induced only limited DNA damages compared with cisplatin, suggesting alternative transduction pathways. Indeed, we found that target genes of the endoplasmic reticulum stress pathway, such as Bip, XBP1, PDI, and CHOP, were activated in RDC11-treated cells. Induction of the transcription factor CHOP, a crucial mediator of endoplasmic reticulum stress apoptosis, was also confirmed in tumors treated with RDC11. Activation of CHOP led to the expression of several of its target genes, including proapoptotic genes. In addition, the silencing of CHOP by RNA interference significantly reduced the cytotoxicity of RDC11. Altogether, our results led us to conclude that RDC11 acts by an atypical pathway involving CHOP and endoplasmic reticulum stress, and thus might provide an interesting alternative for anticancer therapy.
Oncogene | 2008
Isabelle Gross; Isabelle Duluc; Benameur T; Calon A; Elisabeth Martin; Thomas Brabletz; Michèle Kedinger; Claire Domon-Dell; Jean-Noël Freund
The gravity of colorectal cancer is mainly due to the capacity of tumor cells to migrate out of the tumor mass to invade the stroma and disseminate as metastases. The acquisition of a migratory phenotype also occurs during wound healing. Here, we show that several features characterizing invasive colon tumor cells are shared by migrating cells during wound repair in vitro. In particular, the expression of the intestine-specific transcription factor Cdx2, a key gene for intestinal identity downregulated in invasive cancer cells, is reduced during wound healing in vitro. Transcription factors involved in epithelial–mesenchymal transition such as Snail and Slug are upregulated during wound healing and are able to repress Cdx2 transcription. In vitro, forced expression of Cdx2 in human colon cancer cell lines retarded wound repair and reduced migration, whereas inhibition of Cdx2 expression by RNA interference enhanced migration. In vivo, forced expression of Cdx2 opposed tumor cells spreading in nude mice xenografted at three different sites. These data provide evidence that Cdx2 antagonizes the process of tumor cell dissemination, and they suggest that this homeobox gene might represent a new therapeutic target against metastatic spreading of colon cancer.
Gastroenterology | 2008
Fairouz Benahmed; Isabelle Gross; Stephen J. Gaunt; Felix Beck; Frédéric Jehan; Claire Domon–Dell; Elisabeth Martin; Michèle Kedinger; Jean Noel Freund; Isabelle Duluc
BACKGROUND & AIMS The Cdx2 homeobox gene exerts multiple functions including trophectoderm specification, antero-posterior patterning, and determination of intestinal identity. The aim of this study was to map genomic regions that regulate the transcription of Cdx2, with a particular interest in the gut. METHODS Genomic fragments covering 13 kilobase (kb) of the mouse Cdx2 locus were analyzed in transgenic mice and in cell assays. RESULTS No fragment was active in the trophectoderm. Fragments containing the first intron and extending up to -5-kb upstream of the transcription start site became active posteriorly at gastrulation and then inactive at midgestation in every tissue including the endoderm. Specific persistence of activity in the intestinal endoderm/epithelium beyond midgestation requires extending the genomic fragment up to -9 kb. We identified a 250-base pair segment around -8.5-kb binding and responding to endodermal factors, with a stimulatory effect exerted synergistically by HNF4alpha, GATA6, Tcf4, and beta-catenin. These factors were able to activate endogenous expression of Cdx2 in nonintestinal Hela cells. CONCLUSIONS Multiple regulatory regions control the complex developmental pattern of Cdx2, including far upstream sequences required for the persistence of gene expression specifically in the gut epithelium throughout life. Cooperation between HNF4alpha, GATA6, beta-catenin, and Tcf4 contributes to the intestine-specific expression of Cdx2.
Journal of Biological Chemistry | 2003
Isabelle Gross; Debra J. Morrison; Deborah Hyink; Kylie Georgas; Milton A. English; Mathias Mericskay; Seiyu Hosono; David Sassoon; Patricia D. Wilson; Melissa H. Little; Jonathan D. Licht
WT1 encodes a transcription factor involved in kidney development and tumorigenesis. Using representational difference analysis, we identified a new set of WT1 targets, including a homologue of the Drosophila receptor tyrosine kinase regulator, sprouty. Sprouty1 was up-regulated in cell lines expressing wild-type but not mutant WT1. WT1 bound to the endogenous sprouty1 promoter in vivo and directly regulated sprouty1 through an early growth response gene-1 binding site. Expression of Sprouty1 and WT1 overlapped in the developing metanephric mesenchyme, and Sprouty1, like WT1, plays a key role in the early steps of glomerulus formation. Disruption of Sprouty1 expression in embryonic kidney explants by antisense oligonucleotides reduced condensation of the metanephric mesenchyme, leading to a decreased number of glomeruli. In addition, sprouty1 was expressed in the ureteric tree and antisense-treated ureteric trees had cystic lumens. Therefore, sprouty1 represents a physiologically relevant target gene of WT1 during kidney development.
Cell Death & Differentiation | 2007
Isabelle Gross; O Armant; Samir Benosman; J L G de Aguilar; J-N Freund; Michèle Kedinger; Jonathan D. Licht; Christian Gaiddon; Jp Loeffler
Sprouty (Spry) proteins are ligand-inducible inhibitors of receptor tyrosine kinases-dependent signaling pathways, which control various biological processes, including proliferation, differentiation and survival. Here, we investigated the regulation and the role of Spry2 in cells of the central nervous system (CNS). In primary cultures of immature neurons, the neurotrophic factor BDNF (brain-derived neurotrophic factor) regulates spry2 expression. We identified the transcription factors CREB and SP1 as important regulators of the BDNF activation of the spry2 promoter. In immature neurons, we show that overexpression of wild-type Spry2 blocks neurite formation and neurofilament light chain expression, whereas inhibition of Spry2 by a dominant-negative mutant or small interfering RNA favors sprouting of multiple neurites. In mature neurons that exhibit an extensive neurite network, spry2 expression is sustained by BDNF and is downregulated during neuronal apoptosis. Interestingly, in these differentiated neurons, overexpression of Spry2 induces neuronal cell death, whereas its inhibition favors neuronal survival. Together, our results imply that Spry2 is involved in the development of the CNS by inhibiting both neuronal differentiation and survival through a negative-feedback loop that downregulates neurotrophic factors-driven signaling pathways.
Journal of Cellular Physiology | 2006
Natacha Turck; Olivier Lefebvre; Isabelle Gross; Patrick Gendry; Michèle Kedinger; Patricia Simon-Assmann; Jean-François Launay
Intestinal epithelial cells are characterized by continuous renewal and differentiation events, which may be influenced by the basement membrane, and in particular laminins, which are major components of this specialized extracellular matrix. The function and signaling pathways of laminins in these processes are still poorly documented. In this study, we investigated the possible role and the subcellular localization of nucleolin, a nuclear shuttling protein, in relation to differentiation of human intestinal epithelial Caco2/TC7 cells triggered by exogenous laminin‐1. Immunofluorescence and Western blot analysis indicated that laminin‐1 induced early differentiation of the cells concomitantly to a decrease in nuclear nucleolin and its a cell surface location. We also showed that both effects of laminin‐1 on Caco2/TC7 cells—induction of the differentiation marker sucrase‐isomaltase and redistribution of nucleolin—could be mediated by a β1‐integrin dependent cascade that implicated activation of the p38 MAPK pathway. In addition, knock‐down of nucleolin expression by the small interfering RNA strategy mimicked the effect of laminin‐1 as it resulted in the induction of cell polarization and differentiation. Thus, our study suggests that changes in the subcellular distribution and expression level of nucleolin play an important role in intestinal cell differentiation and relay the signaling pathway induced by laminin‐1. J. Cell. Physiol. 206: 545–555, 2006.
Oncogene | 2005
Isabelle Gross; Benoît Lhermitte; Claire Domon-Dell; Isabelle Duluc; Elisabeth Martin; Christian Gaiddon; Michèle Kedinger; Jean-Noël Freund
The Caudal-related homeodomain transcription factor Cdx2 plays a key role in intestinal cell fate determination. Reduction of Cdx2 expression is a feature of many human colon carcinomas and inactivation of one cdx2 allele facilitates the development of invasive adenocarcinoma in the murine colon. Here, we investigated the post-translational regulation of Cdx2. We showed that various forms of Cdx2 coexist in the intestine and colon cancer cell lines, some of them being phosphorylated forms. We found that cyclin-dependent kinase 2 phosphorylated Cdx2 in vitro and in vivo. Using site-specific mutagenesis, we identified serine 281 as a new key residue for Cdx2 phosphorylation. Intriguingly, serine 281 belongs to a conserved motif of four evenly spaced serines (the 4S motif) similar to the one controlling β-catenin degradation by the proteasome pathway. A nonphosphorylated mutant Cdx2 lacking the 4S motif (4S>A) exhibited reduced polyubiquitination upon proteasome inhibition and increased stability compared to wild-type Cdx2. In addition, we found that this mutant was less efficient to suppress colony formation than wild-type Cdx2. Thus, our data highlight a novel post-translational mechanism controlling Cdx2 degradation via phosphorylation and polyubiquitination, which may be of importance for intestinal development and cancer.
Gastroenterology | 2012
Isabelle Hinkel; Isabelle Duluc; Elisabeth Martin; Dominique Guenot; Jean Noel Freund; Isabelle Gross
BACKGROUND & AIMS The intestine-specific homeobox transcription factor Cdx2 is an important determinant of intestinal identity in the embryonic endoderm and regulates the balance between proliferation and differentiation in the adult intestinal epithelium. Human colon tumors often lose Cdx2 expression, and heterozygous inactivation of Cdx2 in mice increases colon tumorigenesis. We sought to identify Cdx2 target genes to determine how it contributes to intestinal homeostasis. METHODS We used expression profiling analysis to identify genes that are regulated by Cdx2 in colon cancer cells lines. Regulation and function of a potential target gene were further investigated using various cell assays. RESULTS In colon cancer cell lines, Cdx2 directly regulated the transcription of the gene that encodes the protocadherin Mucdhl. Mucdhl localized to the apex of differentiated cells in the intestinal epithelium, and its expression was reduced in most human colon tumors. Overexpression of Mucdhl inhibited low-density proliferation of colon cancer cells and reduced tumor formation in nude mice. One isoform of Mucdhl interacted with β-catenin and inhibited its transcriptional activity. CONCLUSIONS The transcription factor Cdx2 activates expression of the protocadherin Mucdhl, which interacts with β-catenin and regulates activities of intestinal cells. Loss of Cdx2 expression in colon cancer cells might reduce expression of Mucdhl and thereby lead to tumor formation.
Gut | 2007
Alexandre Calon; Isabelle Gross; Benoît Lhermitte; Elisabeth Martin; Felix Beck; Bernard Duclos; Michèle Kedinger; Isabelle Duluc; Claire Domon-Dell; Jean-Noël Freund
Aims: The CDX1 and CDX2 homeoproteins are intestine-specific transcription factors regulating homeostasis. We investigated their relevance in experimentally-induced intestinal inflammation. Methods: The response to intestinal inflammation induced by dextran sodium sulfate (DSS) was compared in wild type, Cdx1-/- and Cdx2+/− mice. Intestinal permeability was determined in wild type and Cdx2+/− mice. Protein-protein interactions were investigated by co-immunoprecipitation and GST-pulldown, and their functional consequences were assessed using Luciferase reporter systems. Results: Heterozygous Cdx2+/− mice, but not Cdx1-/- mice, were hypersensitive to DSS-induced acute inflammation as all these mice showed blood in the stools at day 1 of DSS treatment. Hypersensitivity was associated to a 50% higher intestinal permeability. In Cdx2+/- mice, the colonic epithelium was repaired during the week after the end of DSS treatment, whereas two weeks were required for wild type animals. Subsequently, no colonic tumour was observed in Cdx2+/− mice subjected to 5 repeated cycles of DSS, in contrast to the 2.7 tumours found per wild type mouse. Based on the fact that Smad3+/− mice, like Cdx2+/− mice, better repair the damaged intestinal epithelium, we found that the CDX2 protein interacts with SMAD3, independently of SMAD4, resulting in a 5-fold stimulation of SMAD3 transcriptional activity. CDX1 also interacted with SMAD3 but it inhibited by 10-fold the SMAD3/SMAD4-dependent transcription. Conclusion: The Cdx1 and Cdx2 homeobox genes have distinct effects on the outcome of a pro-inflammatory challenge. This is mirrored by different functional interactions of the CDX1 and CDX2 proteins with SMAD3, a major element of the TGFβ signalling pathway.
Cell Death & Differentiation | 2007
Benosman S; Isabelle Gross; Clarke N; Aart G. Jochemsen; Koji Okamoto; Jp Loeffler; Christian Gaiddon
MDMX has been shown to modulate p53 in dividing cells after DNA damage. In this study, we investigated the role of MDMX in primary cultures of neurons undergoing cell death. We found that DNA damage, but also membrane-initiated apoptotic stresses (glutamate receptor; Amyloid β precursor) or survival factor deprivation downregulated MDMX protein levels. Forced downregulation of murine double minute X (MDMX) by shRNA induced apoptosis suggesting that MDMX is required for survival in neurons. Protease inhibitors prevented the loss of MDMX after neurotoxic treatments, indicating a regulation of protein stability. Some, but not all, neurotoxic stresses induced phosphorylation of MDMX at serine 367, further supporting regulation at the protein level. Interestingly, we found that depending on the stimulus either p53 or E2F1 was induced, but overexpression of MDMX inhibited the transcriptional activity of both proapoptotic factors, and maintained neuronal viability upon neurotoxic stresses. Taken together, our data show that MDMX is an antiapoptotic factor in neurons, whose degradation is induced by various stresses and allows activation of p53 and E2F-1 during neuronal apoptosis.