Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Guenon is active.

Publication


Featured researches published by Isabelle Guenon.


Journal of Clinical Investigation | 2007

IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice

Pamela Gasse; Caroline Mary; Isabelle Guenon; Nicolas Noulin; Sabine Charron; Silvia Schnyder-Candrian; Bruno Schnyder; Shizuo Akira; Valerie Quesniaux; Vincent Lagente; Bernhard Ryffel; Isabelle Couillin

The molecular mechanisms of acute lung injury resulting in inflammation and fibrosis are not well established. Here we investigate the roles of the IL-1 receptor 1 (IL-1R1) and the common adaptor for Toll/IL-1R signal transduction, MyD88, in this process using a murine model of acute pulmonary injury. Bleomycin insult results in expression of neutrophil and lymphocyte chemotactic factors, chronic inflammation, remodeling, and fibrosis. We demonstrate that these end points were attenuated in the lungs of IL-1R1- and MyD88-deficient mice. Further, in bone marrow chimera experiments, bleomycin-induced inflammation required primarily MyD88 signaling from radioresistant resident cells. Exogenous rIL-1beta recapitulated a high degree of bleomycin-induced lung pathology, and specific blockade of IL-1R1 by IL-1 receptor antagonist dramatically reduced bleomycin-induced inflammation. Finally, we found that lung IL-1beta production and inflammation in response to bleomycin required ASC, an inflammasome adaptor molecule. In conclusion, bleomycin-induced lung pathology required the inflammasome and IL-1R1/MyD88 signaling, and IL-1 represented a critical effector of pathology and therapeutic target of chronic lung inflammation and fibrosis.


Respiratory Research | 2005

The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis

Boris Manoury; Soazig Nénan; Olivier Leclerc; Isabelle Guenon; Elisabeth Boichot; Jean-Michel Planquois; C. Bertrand; Vincent Lagente

BackgroundReactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway.MethodsMice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal.ResultsBAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains.ConclusionsThese results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis.


Toxicology Letters | 2008

Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation

Normand Podechard; Valérie Lecureur; Eric Le Ferrec; Isabelle Guenon; Lydie Sparfel; David Gilot; John Gordon; Vincent Lagente; Olivier Fardel

Benzo(a)pyrene (BP) is an environmental contaminant known to favor airway inflammation likely through up-regulation of pro-inflammatory cytokines. The present study was designed to characterize its effects toward interleukin-8 (IL-8), a well-established pulmonary inflammatory cytokine. In primary human macrophages, BP was shown to induce IL-8 expression at both mRNA and secretion levels in a dose-dependent manner. Such an up-regulation was likely linked to aryl hydrocarbon receptor (AhR)-activation since BP-mediated IL-8 induction was reduced after AhR expression knock-down through RNA interference. Moreover, electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation experiments showed BP-triggered binding of AhR to a consensus xenobiotic responsive element (XRE) found in the human IL-8 promoter. Finally, BP administration to mice led to over-expression of keratinocyte chemoattractant (KC), the murine functional homologue of IL-8, in lung. It also triggered the recruitment of neutrophils in bronchoalveolar lavage (BAL) fluids, which was however fully abolished in the presence of a chemical antagonist of the KC/IL-8 receptors CXCR1/CXCR2, thus supporting the functional and crucial involvement of KC in BP-induced lung inflammation. Overall, these data highlight an AhR-dependent regulation of IL-8 in response to BP that likely contributes to the airway inflammatory effects of this environmental chemical.


Respiratory Research | 2005

PPARα downregulates airway inflammation induced by lipopolysaccharide in the mouse

Carine Delayre-Orthez; Julien Becker; Isabelle Guenon; Vincent Lagente; Johan Auwerx; Nelly Frossard; Françoise Pons

BackgroundInflammation is a hallmark of acute lung injury and chronic airway diseases. In chronic airway diseases, it is associated with profound tissue remodeling. Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor, that belongs to the nuclear receptor family. Agonists for PPARα have been recently shown to reduce lipopolysaccharide (LPS)- and cytokine-induced secretion of matrix metalloproteinase-9 (MMP-9) in human monocytes and rat mesangial cells, suggesting that PPARα may play a beneficial role in inflammation and tissue remodeling.MethodsWe have investigated the role of PPARα in a mouse model of LPS-induced airway inflammation characterized by neutrophil and macrophage infiltration, by production of the chemoattractants, tumor necrosis factor-α (TNF-α), keratinocyte derived-chemokine (KC), macrophage inflammatory protein-2 (MIP-2) and monocyte chemoattractant protein-1 (MCP-1), and by increased MMP-2 and MMP-9 activity in bronchoalveolar lavage fluid (BALF). The role of PPARα in this model was studied using both PPARα-deficient mice and mice treated with the PPARα activator, fenofibrate.ResultsUpon intranasal exposure to LPS, PPARα-/- mice exhibited greater neutrophil and macrophage number in BALF, as well as increased levels of TNF-α, KC, MIP-2 and MCP-1, when compared to PPARα+/+ mice. PPARα-/- mice also displayed enhanced MMP-9 activity. Conversely, fenofibrate (0.15 to 15 mg/day) dose-dependently reduced the increase in neutrophil and macrophage number induced by LPS in wild-type mice. In animals treated with 15 mg/day fenofibrate, this effect was associated with a reduction in TNF-α, KC, MIP-2 and MCP-1 levels, as well as in MMP-2 and MMP-9 activity. PPARα-/- mice treated with 15 mg/day fenofibrate failed to exhibit decreased airway inflammatory cell infiltrate, demonstrating that PPARα mediates the anti-inflammatory effect of fenofibrate.ConclusionUsing both genetic and pharmacological approaches, our data clearly show that PPARα downregulates cell infiltration, chemoattractant production and enhanced MMP activity triggered by LPS in mouse lung. This suggests that PPARα activation may have a beneficial effect in acute or chronic inflammatory airway disorders involving neutrophils and macrophages.


British Journal of Pharmacology | 2008

The selective MMP-12 inhibitor, AS111793 reduces airway inflammation in mice exposed to cigarette smoke

C. Le Quement; Isabelle Guenon; Jean-Yves Gillon; S. Valenca; V. Cayron-Elizondo; Vincent Lagente; Elisabeth Boichot

Macrophage elastase (MMP‐12) is involved in the inflammatory process of chronic obstructive pulmonary disease (COPD). The aim of this study was to investigate in mice the effect of MMP‐12 inhibition on the inflammatory process induced by cigarette smoke (CS) or by lipopolysaccharide (LPS) exposure of the airways.


International Journal of Immunopathology and Pharmacology | 2006

TIMP-1 is a key factor of fibrogenic response to bleomycin in mouse lung.

Boris Manoury; Sylvie Caulet-Maugendre; Isabelle Guenon; Vincent Lagente; Elisabeth Boichot

Pulmonary fibrosis is characterized by the excessive deposition of extracellular matrix in the interstitium, resulting in respiratory failure. The role of remodeling mediators such as metalloproteinases (MMPs) and their inhibitors (TIMPs) in the fibrogenic process remains misunderstood. We investigated MMP-9, MMP-2, TIMP-1, TIMP-2 and TIMP-3 in the fibrotic response to bleomycin of “fibrosis prone” C57BL/6J and “fibrosis resistant” BALB/c mice. Mice were administered with 0.1 mg bleomycin by intranasal administration. Either 24 h or 14 days after, the mice were anesthetized and underwent either bronchoalveolear lavage (BAL) or lung removal. Collagen deposition in lung tissue was determined by hydroxyproline measurement, MMP activity was analyzed by zymography, and others mediators were analyzed by ELISA. TIMP-1 was localized in lung sections by immunohistochemistry and real time PCR was performed to gene expression in lung. Non parametric Mann & Whitney and Spearman tests were used for statistical analysis. Fourteen days after bleomycin administration, hydroxyproline assay and histological study revealed that BALB/c mice developed significantly less fibrosis compared to C57BL/6J mice. At day 1, bleomycin enhanced TIMP-1, MMP-2 and MMP-9 protein levels in BALF, and induced corresponding genes in lung tissue of both strains. The rise of Timp-1, Mmp-9 and Mmp-2 gene levels were significantly stronger in lungs of C57BL/6J, whereas gelatinase activities of MMP-2 and MMP-9 were similar. Immunohistochemistry revealed that TIMP-1 macrophages and epithelial cells were prominent TIMP-1 producers in both strains. At day 14, neither MMP-2 nor MMP-9 levels exhibited strain-dependent protein level or gene expression, although TIMP-1 was strongly associated with fibrosis. Interestingly, bleomycin induced neither Timp-2 nor Timp-3 in lung tissue at any time of the study. The present study shows that early altered regulation of TIMP-1 following bleomycin administration may be involved in bleomycin-induced pulmonary fibrosis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

MMP-12 induces IL-8/CXCL8 secretion through EGFR and ERK1/2 activation in epithelial cells

Catherine Le Quément; Isabelle Guenon; Jean-Yves Gillon; Vincent Lagente; Elisabeth Boichot

Macrophage metalloelastase (MMP-12) is described to be involved in pulmonary inflammatory response. To determine the mechanisms linking MMP-12 and inflammation, we examined the effect of recombinant human MMP-12 (rhMMP-12) catalytic domain on IL-8/CXCL8 production in cultured human airway epithelial (A549) cells. Stimulation with rhMMP-12 resulted in a concentration-dependent IL-8/CXCL8 synthesis 6 h later. Similar results were also observed in cultured BEAS-2B bronchial epithelial cells. In A549 cells, synthetic matrix metalloproteinase (MMP) inhibitors prevented rhMMP-12-induced IL-8/CXCL8 release. We further demonstrated that in A549 cells, rhMMP-12 induced transient, peaking at 5 min, activation of ERK1/2. Selective MEK inhibitors (U0126 and PD-98059) blocked both IL-8/CXCL8 release and ERK1/2 phosphorylation. IL-8/CXCL8 induction and ERK1/2 activation were preceded by EGF receptor (EGFR) tyrosine phosphorylation, within 2 min, and reduced by selective EGFR tyrosine kinase inhibitors (AG-1478 and PD168393) by a neutralizing EGFR antibody and by small interfering RNA oligonucleotides directed against EGFR, implicating EGFR activation. In addition, we observed an activation of c-Fos in A549 cells stimulated by rhMMP-12, dependent on ERK1/2. Using small interfering technique, we showed that c-Fos is involved in rhMMP-12-induced IL-8/CXCL8 production. From these results, we conclude that one mechanism, by which MMP-12 induces IL-8/CXCL8 release from the alveolar epithelium, is the EGFR/ERK1/2/activating protein-1 pathway.


Clinical and Experimental Pharmacology and Physiology | 2004

Interactions of tachykinin receptor antagonists with lipopolysaccharide-induced airway inflammation in mice.

M Veron; Isabelle Guenon; S Nenan; X Emonds-Alt; Charles Advenier; Vincent Lagente; Elisabeth Boichot

1. Several observations suggest that tachykinins are involved in the pathogenesis of bronchopulmonary alterations. We have investigated the effect of antagonists for tachykinin NK1 (SR 140333), NK2 (SR 48968) or NK3 (SR 142801) receptors on inflammatory cell recruitment, tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 release and matrix metalloproteinase (MMP)‐9 activity in the bronchoalveolar lavage fluid (BALF) of mice exposed to lipopolysaccharide (LPS; 100 µg/mL aerosol for 30 min).


Archive | 2008

Anti-inflammatory properties of MMP inhibitors in experimental models of chronic obstructive pulmonary disease and lung inflammation

Catherine Le Quément; Vincent Lagente; Isabelle Guenon; Valeria Muzio; Jean-Yves Gillon; Elisabeth Boichot

Matrix metalloproteinases (MMPs) are a group of proteases known to regulate the turnover of extracellular matrix and thus are suggested to be important in the process of lung disease associated with tissue remodelling. Furthermore, the concept that modulation of airway remodelling including excessive proteolysis damage of the tissue, may be of interest as a basis for future treatment. Among the metalloproteinases (MMPs) family, macrophage elastase (MMP-12) is able to degrade extracellular matrix components such as elastin and is involved in tissue remodelling processes in chronic obstructive pulmonary disease including emphysema. Recent studies using broad spectrum MMP or dual MMP-9/MMP-12 inhibitors have demonstrated a reduction in both inflammatory process and airspace enlargement in lung tissue. In the present chapter, we also report the inhibitory activity of a new MMP-9/MMP-12 inhibitor, AS112108, on acute lung inflammatory processes induced by cigarette smoke.


International Immunopharmacology | 2007

Influence of early neutrophil depletion on MMPs/TIMP-1 balance in bleomycin-induced lung fibrosis.

Boris Manoury; Soizig Nénan; Isabelle Guenon; Vincent Lagente; Elisabeth Boichot

Collaboration


Dive into the Isabelle Guenon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles Advenier

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge