Isabelle Lajoie-Mazenc
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isabelle Lajoie-Mazenc.
Journal of Biological Chemistry | 2005
Bruno Canguilhem; Anne Pradines; Caroline Baudouin; Céline Boby; Isabelle Lajoie-Mazenc; Marie Charveron; Gilles Favre
Exposure of the skin to UVB light results in the formation of DNA photolesions that can give rise to cell death, mutations, and the onset of carcinogenic events. Specific proteins are activated by UVB and then trigger signal transduction pathways that lead to cellular responses. An alteration of these signaling molecules is thought to be a fundamental event in tumor promotion by UVB irradiation. RhoB, encoding a small GTPase has been identified as a DNA damage-inducible gene. RhoB is involved in epidermal growth factor (EGF) receptor trafficking, cytoskeletal organization, cell transformation, and survival. We have analyzed the regulation of RhoB and elucidated its role in the cellular response of HaCaT keratinocytes to relevant environmental UVB irradiation. We report here that the activated GTP-bound form of RhoB is increased rapidly within 5 min of exposure to UVB, and then RhoB protein levels increased concomitantly with EGF receptor (EGFR) activation. Inhibition of UVB-induced EGFR activation prevents RhoB protein expression and AKT phosphorylation but not the early activation of RhoB. Blocking UVB-induced RhoB expression with specific small interfering RNAs inhibits AKT and glycogen synthase kinase-3β phosphorylation through inhibition of EGFR expression. Moreover, down-regulation of RhoB potentiates UVB-induced cell apoptosis. In contrast, RhoB overexpression protects keratinocytes against UVB-induced apoptosis. These results indicated that RhoB is regulated upon UVB exposure by a two-step process consisting of an early EGFR-independent RhoB activation followed by an EGFR-dependent induction of RhoB expression. Moreover, we have demonstrated that RhoB is essential in regulating keratinocyte cell survival after UVB exposure, suggesting its potential role in photocarcinogenesis.
Cancer Research | 2006
Nicolas Skuli; Sylvie Monferran; Caroline Delmas; Isabelle Lajoie-Mazenc; Gilles Favre; Christine Toulas; Elizabeth Cohen-Jonathan-Moyal
Hypoxia is a crucial factor in tumor aggressiveness and resistance to treatment, particularly in glioma. Our previous results have shown that inhibiting the small GTPase RhoB increased oxygenation of U87 human glioblastoma xenografts, in part, by regulating angiogenesis. We investigated here whether RhoB might also control a signaling pathway that would permit glioma cells to adapt to hypoxia. We first showed that silencing RhoB with siRNA induced degradation and inhibition of the transcriptional activity of the hypoxia-inducible factor by the proteasome in U87 hypoxic cells. This RhoB-dependent degradation of hypoxia-inducible factor-1alpha in hypoxic conditions was mediated by the Akt/glycogen synthase kinase-3beta pathway. While investigating how hypoxia could activate this signaling pathway, using the GST-Rhotekin RBD pulldown assay, we showed the early activation of RhoB by reactive oxygen species under hypoxic conditions and, subsequently, its participation in the ensuing cellular adaptation to hypoxia. Overall, therefore, our results have not only highlighted a new signaling pathway for hypoxia controlled by the small GTPase RhoB, but they also strongly implicate RhoB as a potentially important therapeutic target for decreasing tumor hypoxia.
Cytoskeleton | 1997
Claire Détraves; Honoré Mazarguil; Isabelle Lajoie-Mazenc; Monique Julian; Brigitte Raynaud-Messina; Michel Wright
The presence of gamma-tubulin in microtubule preparations, obtained by disassembly/ assembly cycles at 0degreesC/37degreesC from the brain of several mammals, is demonstrated by immunoblotting with specific antibodies directed against three distinct regions of the protein. In contrast gamma-tubulin was absent from pure tubulin obtained by chromatography on phosphocellulose, but was retained on the column with the other microtubule-associated proteins. A large part of the gamma-tubulin was present in cold stable material remaining after microtubule disassembly at OdegreesC and was partially solubilized using high salt, thus preventing its purification by the usual assembly/disassembly procedure used for alpha/beta-tubulin heterodimers. Brain gamma-tubulin was purified by affinity chromatography with gamma-tubulin antibodies raised against its carboxyl terminal region. Purified gamma-tubulin consisted of at least two polypeptides present in equal quantities and exhibiting a pI of 6.5 and 6.6, respectively. It was associated with the alpha/beta-tubulin heterodimer and with at least five other polypeptides of 75, 105, 130, 195, and 250 kDa. With the exception of the 250 kDa polypeptide, all of these proteins seem to be present in gamma-tubulin complexes isolated from Xenopus eggs. But, in contrast with Xenopus egg complexes, brain complexes exhibited a considerable heterogeneity of their apparent masses and composition in sucrose gradient centrifugation, in agreement with the absence of an homogeneous structure in electron microscopy. Despite this heterogeneity, gamma-tubulin complexes bind quantitatively to microtubule extremities. The possibility to further use mammalian brain gamma-tubulin and some of its associated proteins in biochemical and pharmacological experiments is of interest since brain microtubule protein preparations have been extensively used for studying both microtubule dynamics and the activity of microtubule poisons.
Journal of Biological Chemistry | 2008
Isabelle Lajoie-Mazenc; Daniel Tovar; Marie Penary; Barbara Lortal; Sophie Allart; Cyril Favard; Meryem Brihoum; Anne Pradines; Gilles Favre
Rho GTPases have been implicated in the control of several cellular functions, including regulation of the actin cytoskeleton, cell proliferation, and oncogenesis. Unlike RhoA and RhoC, RhoB localizes in part to endosomes and controls endocytic trafficking. Using a yeast two-hybrid screen and a glutathione S-transferase pulldown assay, we identified LC2, the light chain of the microtubule-associated protein MAP1A, as a novel binding partner for RhoB. GTP binding and the 18-amino acid C-terminal hypervariable domain of RhoB are critical for its binding to MAP1A/LC2. Coimmunoprecipitation and immunofluorescence experiments showed that this interaction occurs in U87 cells. Down-regulation of MAP1A/LC2 expression decreased epidermal growth factor (EGF) receptor expression and modified the signaling response to EGF treatment. We concluded that MAP1A/LC2 is critical for RhoB function in EGF-induced EGF receptor regulation. Because MAP1A/LC2 is thought to function as an adaptor between microtubules and other molecules, we postulate that the RhoB and MAP1A/LC2 interactions facilitate endocytic vesicle trafficking and regulate the trafficking of signaling molecules.
The FASEB Journal | 2005
Anne-Françoise Tilkin-Mariamé; Carine Cormary; Nathalie Ferro; Guillaume Sarrabayrouse; Isabelle Lajoie-Mazenc; Jean-Charles Faye; Gilles Favre
Defective antitumor immune responses are frequent consequences of defects in the expression of major histocompatibility complex (MHC) class I and costimulatory molecules. We demonstrated that statins, inhibitors of HMGCoA reductase, enhance mIFN‐γ induced expression of MHC class I antigens on murine B16F10 melanoma. GGTI‐298, a geranylgeranyl transferase I inhibitor, but not FTI‐277, a farnesyl transferase inhibitor, mimics this effect of statins. This effect is related to peptide transporter protein TAP1 up‐regulation. Simultaneously, GGTI‐298 induces the expression of CD80 and CD86 costimulatory molecules. C3 exoenzyme, which selectively inactivates Rho proteins, phenocopies the effects of GGTI‐298, indicating a role for Rho proteins in these events. Furthermore, the treatment of B16F10 cells with GGTI‐298 or C3 exoenzyme associated with mIFN‐γ induces in vivo tumor growth slowing down in immunocompetent but not in nu/nu syngeneic mice. Both in vivo injections and in vitro restimulation of splenocytes with GGTI‐298‐ and mIFN‐γ‐treated B16F10 cells induces an enhancement of specific CD8 T lymphocytes labeled by TRP‐2/H‐2Kb tetramers. Finally, these effects are not limited to mouse models since they were also reproduced in two human melanoma cell lines. These observations indicate that protein geranylgeranylation as well as Rho protein are critical for costimulatory and IFN‐γ‐dependent MHC class I molecule expression in melanoma.
Cancer Research | 2015
Florie Bertrand; Julia Rochotte; Céline Colacios; Anne Montfort; Anne-Françoise Tilkin-Mariamé; Christian Touriol; Philippe Rochaix; Isabelle Lajoie-Mazenc; Nathalie Andrieu-Abadie; Thierry Levade; Hervé Benoist; Bruno Ségui
TNF plays a dual, still enigmatic role in melanoma, either acting as a cytotoxic cytokine or favoring a tumorigenic inflammatory microenvironment. Herein, the tumor growth of melanoma cell lines expressing major histocompatibility complex class I molecules at high levels (MHC-I(high)) was dramatically impaired in TNF-deficient mice, and this was associated with enhanced tumor-infiltrating CD8(+) T lymphocytes. Immunodepletion of CD8 T cells fully restored melanoma growth in TNF(-/-) mice. Systemic administration of Etanercept inhibited MHC-I(high) melanoma growth in immunocompetent but not in immunodeficient (IFNγ(-/-), nude, or CD8(-/-)) mice. MHC-I(high) melanoma growth was also reduced in mice lacking TNF-R1, but not TNF-R2. TNF(-/-) and TNF-R1(-/-) mice as well as Etanercept-treated WT mice displayed enhanced intratumor content of high endothelial venules surrounded by high CD8(+) T-cell density. Adoptive transfer of activated TNF-R1-deficient or -proficient CD8(+) T cells in CD8-deficient mice bearing B16K1 tumors demonstrated that TNF-R1 deficiency facilitates the accumulation of live CD8(+) T cells into the tumors. Moreover, in vitro experiments indicated that TNF triggered activated CD8(+) T cell death in a TNF-R1-dependent manner, likely limiting the accumulation of tumor-infiltrating CD8(+) T cells in TNF/TNF-R1-proficient animals. Collectively, our observations indicate that TNF-R1-dependent TNF signaling impairs tumor-infiltrating CD8(+) T-cell accumulation and may serve as a putative target to favor CD8(+) T-cell-dependent immune response in melanoma.
Methods of Molecular Biology | 2012
Patrick Chinestra; Isabelle Lajoie-Mazenc; Jean-Charles Faye; Gilles Favre
We describe a phage display approach to select active Rho-specific scFv sensors. This in vitro technique allows preserving the antigen conformation stability all along the selection process. We used the GTP locked RhoBQ63L mutant as antigen against the Griffin.1 library composed of a human synthetic V(H) + V(L) scFv cloned in the pHEN2 phagemid vector. The method described here has permitted to identify an scFv that discriminates between the activated and the inactivated form of the Rho subfamily.
PLOS ONE | 2014
Patrick Chinestra; Aurélien Olichon; Claire Medale-Giamarchi; Isabelle Lajoie-Mazenc; Rémi Gence; Cyril Inard; Laetitia Ligat; Jean-Charles Faye; Gilles Favre
Determining the cellular level of activated form of RhoGTPases is of key importance to understand their regulatory functions in cell physiopathology. We previously reported scFvC1, that selectively bind to the GTP-bound form of RhoA, RhoB and RhoC. In this present study we generate, by molecular evolution, a new phage library to isolate scFvs displaying high affinity and selectivity to RhoA and RhoB. Using phage display affinity maturation against the GTP-locked mutant RhoAL63, we isolated scFvs against RhoA active conformation that display Kd values at the nanomolar range, which corresponded to an increase of affinity of three orders of magnitude compared to scFvC1. Although a majority of these evolved scFvs remained selective towards the active conformation of RhoA, RhoB and RhoC, we identified some scFvs that bind to RhoA and RhoC but not to RhoB activated form. Alternatively, we performed a substractive panning towards RhoB, and isolated the scFvE3 exhibiting a 10 times higher affinity for RhoB than RhoA activated forms. We showed the peculiar ability of scFvE3 to detect RhoB but not RhoA GTP-bound form in cell extracts overexpressing Guanine nucleotide Exchange Factor XPLN as well as in EGF stimulated HeLa cells. Our results demonstrated the ability of scFvs to distinguish RhoB from RhoA GTP-bound form and provide new selective tools to analyze the cell biology of RhoB GTPase regulation.
Journal of Cell Science | 2018
Faten Koraïchi; Rémi Gence; Catherine Bouchenot; Sarah Grosjean; Isabelle Lajoie-Mazenc; Gilles Favre; Stéphanie Cabantous
ABSTRACT The human Ras superfamily of small GTPases controls essential cellular processes such as gene expression and cell proliferation. As their deregulation is widely associated with human cancer, small GTPases and their regulatory proteins have become increasingly attractive for the development of novel therapeutics. Classical methods to monitor GTPase activation include pulldown assays that limit the analysis of GTP-bound form of proteins from cell lysates. Alternatively, live-cell FRET biosensors may be used to study GTPase activation dynamics in response to stimuli, but these sensors often require further optimization for high-throughput applications. Here, we describe a cell-based approach that is suitable to monitor the modulation of small GTPase activity in a high-content analysis. The assay relies on a genetically encoded tripartite split-GFP (triSFP) system that we integrated in an optimized cellular model to monitor modulation of RhoA and RhoB GTPases. Our results indicate the robust response of the reporter, allowing the interrogation of inhibition and stimulation of Rho activity, and highlight potential applications of this method to discover novel modulators and regulators of small GTPases and related protein-binding domains. Summary: The development of a fluorescent reporter of GTPase activation based on tripartite split-GFP that enables the evaluation of GEF activity and the effect of modulators of GTPase activation in a high-content analysis.
Journal of Cell Science | 1993
Monique Julian; Yvette Tollon; Isabelle Lajoie-Mazenc; André Moisand; H. Mazarguil; A. Puget; Michel Wright