Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Lebars is active.

Publication


Featured researches published by Isabelle Lebars.


The EMBO Journal | 2001

Solution structure of conserved AGNN tetraloops: insights into Rnt1p RNA processing

Isabelle Lebars; Bruno Lamontagne; Satoko Yoshizawa; Sherif Abou Elela; Dominique Fourmy

Rnt1p, the yeast orthologue of RNase III, cleaves rRNAs, snRNAs and snoRNAs at a stem capped with conserved AGNN tetraloop. Here we show that 9 bp long stems ending with AGAA or AGUC tetraloops bind to Rnt1p and direct specific but sequence‐independent RNA cleavage when provided with stems longer than 13 bp. The solution structures of these two tetraloops reveal a common fold for the terminal loop stabilized by non‐canonical A–A or A–C pairs and extensive base stacking. The conserved nucleotides are stacked at the 5′ side of the loop, exposing their Watson–Crick and Hoogsteen faces for recognition by Rnt1p. These results indicate that yeast RNase III recognizes the fold of a conserved single‐stranded tetraloop to direct specific dsRNA cleavage.


Journal of Molecular Biology | 2003

Sequence dependence of substrate recognition and cleavage by yeast RNase III.

Bruno Lamontagne; Ghada Ghazal; Isabelle Lebars; Satoko Yoshizawa; Dominique Fourmy; Sherif Abou Elela

Yeast Rnt1p is a member of the double-stranded RNA (dsRNA) specific RNase III family of endoribonucleases involved in RNA processing and RNA interference (RNAi). Unlike other RNase III enzymes, which recognize a variety of RNA duplexes, Rnt1p cleaves specifically RNA stems capped with the conserved AGNN tetraloop. This unusual substrate specificity challenges the established dogma for substrate selection by RNase III and questions the dsRNA contribution to recognition by Rnt1p. Here we show that the dsRNA sequence adjacent to the tetraloop regulates Rnt1p cleavage by interfering with RNA binding. In context, sequences surrounding the cleavage site directly influence the cleavage efficiency. Introduction of sequences that stabilize the RNA helix enhanced binding while reducing the turnover rate indicating that, unlike the tetraloop, Rnt1p binding to the dsRNA helix may become rate-limiting. These results suggest that Rnt1p activity is strictly regulated by a combination of primary and tertiary structural elements allowing a substrate-specific binding and cleavage efficiency.


Nucleic Acids Research | 2008

Exploring TAR–RNA aptamer loop–loop interaction by X-ray crystallography, UV spectroscopy and surface plasmon resonance

Isabelle Lebars; Pierre Legrand; Ahissan Aimé; Noël Pinaud; Sébastien Fribourg; Carmelo Di Primo

In HIV-1, trans-activation of transcription of the viral genome is regulated by an imperfect hairpin, the trans-activating responsive (TAR) RNA element, located at the 5′ untranslated end of all viral transcripts. TAR acts as a binding site for viral and cellular proteins. In an attempt to identify RNA ligands that would interfere with the virus life-cycle by interacting with TAR, an in vitro selection was previously carried out. RNA hairpins that formed kissing-loop dimers with TAR were selected [Ducongé F. and Toulmé JJ (1999) RNA, 5:1605–1614]. We describe here the crystal structure of TAR bound to a high-affinity RNA aptamer. The two hairpins form a kissing complex and interact through six Watson–Crick base pairs. The complex adopts an overall conformation with an inter-helix angle of 28.1°, thus contrasting with previously reported solution and modelling studies. Structural analysis reveals that inter-backbone hydrogen bonds between ribose 2′ hydroxyl and phosphate oxygens at the stem-loop junctions can be formed. Thermal denaturation and surface plasmon resonance experiments with chemically modified 2′-O-methyl incorporated into both hairpins at key positions, clearly demonstrate the involvement of this intermolecular network of hydrogen bonds in complex stability.


The EMBO Journal | 2003

Structure of 23S rRNA hairpin 35 and its interaction with the tylosin-resistance methyltransferase RlmAII

Isabelle Lebars; Satoko Yoshizawa; Anne R. Stenholm; Eric Guittet; Stephen Douthwaite; Dominique Fourmy

The bacterial rRNA methyltransferase RlmAII (formerly TlrB) contributes to resistance against tylosin‐like 16‐membered ring macrolide antibiotics. RlmAII was originally discovered in the tylosin‐producer Streptomyces fradiae, and members of this subclass of methyltransferases have subsequently been found in other Gram‐positive bacteria, including Streptococcus pneumoniae. In all cases, RlmAII methylates 23S rRNA at nucleotide G748, which is situated in a stem–loop (hairpin 35) at the macrolide binding site of the ribosome. The conformation of hairpin 35 recognized by RlmAII is shown here by NMR spectroscopy to resemble the anticodon loop of tRNA. The loop folds independently of the rest of the 23S rRNA, and is stabilized by a non‐canonical G–A pair and a U‐turn motif, rendering G748 accessible. Binding of S.pneumoniae RlmAII induces changes in NMR signals at specific nucleotides that are involved in the methyltransferase–RNA interaction. The conformation of hairpin 35 that interacts with RlmAII is radically different from the structure this hairpin adopts within the 50S subunit. This indicates that the hairpin undergoes major structural rearrangement upon interaction with ribosomal proteins during 50S assembly.


Journal of Molecular Biology | 2002

NMR Structure of Bacterial Ribosomal Protein L20: Implications for Ribosome Assembly and Translational Control

Sophie Raibaud; Isabelle Lebars; Maude Guillier; Claude Chiaruttini; François Bontems; Alexey Rak; Maria Garber; Frédéric Allemand; Mathias Springer; Frédéric Dardel

L20 is a specific protein of the bacterial ribosome, which is involved in the early assembly steps of the 50S subunit and in the feedback control of the expression of its own gene. This dual function involves specific interactions with either the 23S rRNA or its messenger RNA. The solution structure of the free Aquifex aeolicus L20 has been solved. It is composed of an unstructured N-terminal domain comprising residues 1-58 and a C-terminal alpha-helical domain. This is in contrast with what is observed in the bacterial 50S subunit, where the N-terminal region folds as an elongated alpha-helical region. The solution structure of the C-terminal domain shows that several solvent-accessible, conserved residues are clustered on the surface of the molecule and are probably involved in RNA recognition. In vivo studies show that this domain is sufficient to repress the expression of the cistrons encoding L35 and L20 in the IF3 operon. The ability of L20 C-terminal domain to specifically recognise RNA suggests an assembly mechanism for L20 into the ribosome. The pre-folded C-terminal domain would make a primary interaction with a specific site on the 23S rRNA. The N-terminal domain would then fold within the ribosome, participating in its correct 3D assembly.


Nucleic Acids Research | 2010

HEXIM1 targets a repeated GAUC motif in the riboregulator of transcription 7SK and promotes base pair rearrangements

Isabelle Lebars; Denise Martinez-Zapien; A. Durand; J. Coutant; Bruno Kieffer; Anne-Catherine Dock-Bregeon

7SK snRNA, an abundant RNA discovered in human nucleus, regulates transcription by RNA polymerase II (RNAPII). It sequesters and inhibits the transcription elongation factor P-TEFb which, by phosphorylation of RNAPII, switches transcription from initiation to processive elongation and relieves pauses of transcription. This regulation process depends on the association between 7SK and a HEXIM protein, neither isolated partner being able to inhibit P-TEFb alone. In this work, we used a combined NMR and biochemical approach to determine 7SK and HEXIM1 elements that define their binding properties. Our results demonstrate that a repeated GAUC motif located in the upper part of a hairpin on the 5′-end of 7SK is essential for specific HEXIM1 recognition. Binding of a peptide comprising the HEXIM Arginine Rich Motif (ARM) induces an opening of the GAUC motif and stabilization of an internal loop. A conserved proline-serine sequence in the middle of the ARM is shown to be essential for the binding specificity and the conformational change of the RNA. This work provides evidences for a recognition mechanism involving a first event of induced fit, suggesting that 7SK plasticity is involved in the transcription regulation.


Nucleic Acids Research | 2007

NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA-modified aptamer

Isabelle Lebars; Tristan Richard; Carmelo Di Primo; Jean-Jacques Toulmé

The trans-activating responsive (TAR) RNA element located in the 5′ untranslated region of the HIV-1 genome is a 57-nt imperfect stem-loop essential for the viral replication. TAR regulates transcription by interacting with both viral and cellular proteins. RNA hairpin aptamers specific for TAR were previously identified by in vitro selection [Ducongé,F. and Toulmé,J.J. (1999) In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. RNA, 5, 1605–1614]. These aptamers display a 5′-GUCCCAGA-3′ consensus apical loop, partially complementary to the TAR one, leading to the formation of a TAR–aptamer kissing complex. The conserved GA combination (underlined in the consensus sequence) has been shown to be crucial for the formation of a highly stable complex. To improve the nuclease resistance of the aptamer and to increase its affinity for TAR, locked nucleic acid (LNA) nucleotides were introduced in the aptamer apical loop. LNA are nucleic acids analogues that contain a 2′-O,4′-C methylene linkage and that raise the thermostablity of duplexes. We solved the NMR solution structure of the TAR–LNA-modified aptamer kissing complex. Structural analysis revealed the formation of a non-canonical G•A pair leading to increased stacking at the stem-loop junction. Our data also showed that the introduction of LNA residues provides an enhanced stability while maintaining a normal Watson–Crick base pairing with a loop–loop conformation close to an A-type.


Nature Communications | 2016

Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity.

Stefanie Schöne; Marcel Jurk; Mahdi Bagherpoor Helabad; Iris Dror; Isabelle Lebars; Bruno Kieffer; Petra Imhof; Remo Rohs; Martin Vingron; Morgane Thomas-Chollier; Sebastiaan H. Meijsing

The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes.


Nucleic Acids Research | 2014

A fully enzymatic method for site-directed spin labeling of long RNA

Isabelle Lebars; Bertrand Vileno; Sarah Bourbigot; Philippe Turek; Philippe Wolff; Bruno Kieffer

Site-directed spin labeling is emerging as an essential tool to investigate the structural and dynamical features of RNA. We propose here an enzymatic method, which allows the insertion of a paramagnetic center at a specific position in an RNA molecule. The technique is based on a segmental approach using a ligation protocol with T4 RNA ligase 2. One transcribed acceptor RNA is ligated to a donor RNA in which a thio-modified nucleotide is introduced at its 5′-end by in vitro transcription with T7 RNA polymerase. The paramagnetic thiol-specific reagent is subsequently attached to the RNA ligation product. This novel strategy is demonstrated by introducing a paramagnetic probe into the 55 nucleotides long RNA corresponding to K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-Box leader RNA. The efficiency of the coupling reaction and the quality of the resulting spin-labeled RNA were assessed by Mass Spectrometry, Electron Paramagnetic Resonance (EPR) and Nuclear Magnetic Resonance (NMR). This method enables various combinations of isotopic segmental labeling and spin labeling schemes, a strategy that will be of particular interest to investigate the structural and dynamical properties of large RNA complexes by NMR and EPR spectroscopies.


Methods of Molecular Biology | 2009

Aptamers targeting RNA molecules.

Marguerite Watrin; Eric Dausse; Isabelle Lebars; Bernard Rayner; Anthony Bugaut; Jean-Jacques Toulmé

Oligonucleotides complementary to RNA sequences interact poorly with folded target regions. In vitro selection of oligonucleotides carried out against RNA structures have led to aptamers that frequently differ from antisense sequences, but rather take advantage of non-double-stranded peculiarities of the target. Studies along this line provide information about tertiary RNA architectures as well as their interaction with ligand of interest. We describe here a genomic SELEX approach and its application to the recognition of stem-loop structures prone to the formation of kissing complexes. We also provide technical details for running a procedure termed 2D-SELEX that takes advantage of both in vitro selection and dynamic combinatorial chemistry. This allows selecting aptamer derivatives containing modified nucleotides that cannot be incorporated by polymerases. Last we present in vitro transcription conditions under which large amounts of RNA, suitable for NMR structural studies, can be obtained. These different aspects of the SELEX technology have been applied to the trans-activating responsive element of the human immunodeficiency virus type 1, which is crucial for the transcription of the retroviral genome.

Collaboration


Dive into the Isabelle Lebars's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Dausse

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

Dominique Fourmy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Satoko Yoshizawa

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bruno Kieffer

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Douthwaite

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge