Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Maillet is active.

Publication


Featured researches published by Isabelle Maillet.


Journal of Immunology | 2007

IL-1 Receptor-Mediated Signal Is an Essential Component of MyD88-Dependent Innate Response to Mycobacterium tuberculosis Infection

Cecile Fremond; Dieudonnée Togbe; Emilie Doz; Stéphanie Rose; Virginie Vasseur; Isabelle Maillet; Muazzam Jacobs; Bernhard Ryffel; Valérie Quesniaux

MyD88, the common adapter involved in TLR, IL-1, and IL-18 receptor signaling, is essential for the control of acute Mycobacterium tuberculosis (MTB) infection. Although TLR2, TLR4, and TLR9 have been implicated in the response to mycobacteria, gene disruption for these TLRs impairs only the long-term control of MTB infection. Here, we addressed the respective role of IL-1 and IL-18 receptor pathways in the MyD88-dependent control of acute MTB infection. Mice deficient for IL-1R1, IL-18R, or Toll-IL-1R domain-containing adaptor protein (TIRAP) were compared with MyD88-deficient mice in an acute model of aerogenic MTB infection. Although primary MyD88-deficient macrophages and dendritic cells were defective in cytokine production in response to mycobacterial stimulation, IL-1R1-deficient macrophages exhibited only a reduced IL-12p40 secretion with unaffected TNF, IL-6, and NO production and up-regulation of costimulatory molecules CD40 and CD86. Aerogenic MTB infection of IL-1R1-deficient mice was lethal within 4 wk with 2-log higher bacterial load in the lung and necrotic pneumonia but efficient pulmonary CD4 and CD8 T cell responses, as seen in MyD88-deficient mice. Mice deficient for IL-18R or TIRAP controlled acute MTB infection. These data demonstrate that absence of IL-1R signal leads to a dramatic defect of early control of MTB infection similar to that seen in the absence of MyD88, whereas IL-18R and TIRAP are dispensable, and that IL-1, together with IL-1-induced innate response, might account for most of MyD88-dependent host response to control acute MTB infection.


Journal of Pharmacology and Experimental Therapeutics | 2014

Antifibrotic and Anti-inflammatory Activity of the Tyrosine Kinase Inhibitor Nintedanib in Experimental Models of Lung Fibrosis

Lutz Wollin; Isabelle Maillet; Valérie Quesniaux; Alexander Holweg; Bernhard Ryffel

The tyrosine kinase inhibitor nintedanib (BIBF 1120) is in clinical development for the treatment of idiopathic pulmonary fibrosis. To explore its mode of action, nintedanib was tested in human lung fibroblasts and mouse models of lung fibrosis. Human lung fibroblasts expressing platelet-derived growth factor (PDGF) receptor-α and -β were stimulated with platelet-derived growth factor BB (homodimer) (PDGF-BB). Receptor activation was assessed by autophosphorylation and cell proliferation by bromodeoxyuridine incorporation. Transforming growth factor β (TGFβ)-induced fibroblast to myofibroblast transformation was determined by α-smooth muscle actin (αSMA) mRNA analysis. Lung fibrosis was induced in mice by intratracheal bleomycin or silica particle administration. Nintedanib was administered every day by gavage at 30, 60, or 100 mg/kg. Preventive nintedanib treatment regimen started on the day that bleomycin was administered. Therapeutic treatment regimen started at various times after the induction of lung fibrosis. Bleomycin caused increased macrophages and lymphocytes in the bronchoalveolar lavage (BAL) and elevated interleukin-1β (IL-1β), tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen in lung tissue. Histology revealed chronic inflammation and fibrosis. Silica-induced lung pathology additionally showed elevated BAL neutrophils, keratinocyte chemoattractant (KC) levels, and granuloma formation. Nintedanib inhibited PDGF receptor activation, fibroblast proliferation, and fibroblast to myofibroblast transformation. Nintedanib significantly reduced BAL lymphocytes and neutrophils but not macrophages. Furthermore, interleukin-1β, KC, TIMP-1, and lung collagen were significantly reduced. Histologic analysis showed significantly diminished lung inflammation, granuloma formation, and fibrosis. The therapeutic effect was dependent on treatment start and duration. Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and transformation of human lung fibroblasts and showed antifibrotic and anti-inflammatory activity in two animal models of pulmonary fibrosis. These results suggest that nintedanib may impact the progressive course of fibrotic lung diseases such as idiopathic pulmonary fibrosis.


Infection and Immunity | 2004

Toll-Like Receptor 2 Is Required for Optimal Control of Listeria monocytogenes Infection

David Torres; Mathieu Barrier; Franck Bihl; Valerie Quesniaux; Isabelle Maillet; Shizuo Akira; Bernhard Ryffel; François Erard

ABSTRACT The control of Listeria monocytogenes infection depends on the rapid activation of the innate immune system, likely through Toll-like receptors (TLR), since mice deficient for the common adapter protein of TLR signaling, myeloid differentiation factor 88 (MyD88), succumb to Listeria infection. In order to test whether TLR2 is involved in the control of infections, we compared the host response in TLR2-deficient mice with that in wild-type mice. Here we show that TLR2-deficient mice are more susceptible to systemic infection by Listeria than are wild-type mice, with a reduced survival rate, increased bacterial burden in the liver, and abundant and larger hepatic microabscesses containing increased numbers of neutrophils. The production of tumor necrosis factor, interleukin-12, and nitric oxide and the expression of the costimulatory molecules CD40 and CD86, which are necessary for the control of infection, were reduced in TLR2-deficient macrophages and dendritic cells stimulated by Listeria and were almost abolished in the absence of MyD88, coincident with the high susceptibility of MyD88-deficient mice to in vivo infection. Therefore, the present data demonstrate a role for TLR2 in the control of Listeria infection, but other MyD88-dependent signals may contribute to host resistance.


Journal of Immunology | 2005

Both Hemopoietic and Resident Cells Are Required for MyD88-Dependent Pulmonary Inflammatory Response to Inhaled Endotoxin

Nicolas Noulin; Valerie Quesniaux; Silvia Schnyder-Candrian; Bruno Schnyder; Isabelle Maillet; Thomas Robert; B. Boris Vargaftig; Bernhard Ryffel; Isabelle Couillin

Inhaled endotoxin induces an inflammatory response that contributes to the development and severity of asthma and other forms of airway disease. Here, we show that inhaled endotoxin-induced acute bronchoconstriction, TNF, IL-12p40, and KC production, protein leak, and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecule MyD88. Bronchoconstriction, inflammation, and protein leak are normal in Toll/IL-1R domain-containing adaptor inducing IFN-β-deficient mice. MyD88 is involved in TLR, but also in IL-1R-associated kinase 1-mediated IL-1R and -18R signaling. We exclude a role for IL-1 and IL-18 pathways in this response, as IL-1R1 and caspase-1 (ICE)-deficient mice develop lung inflammation while TLR4-deficient mice are unresponsive to inhaled LPS. Significantly, using bone marrow chimera, we demonstrate that both hemopoietic and resident cells are necessary for a full MyD88-dependent response to inhaled endotoxin; bronchoconstriction depends on resident cells while cytokine secretion is mediated by hemopoietic cells.


Journal of Immunology | 2005

Dual Effects of p38 MAPK on TNF-Dependent Bronchoconstriction and TNF-Independent Neutrophil Recruitment in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome

Silvia Schnyder-Candrian; Valerie Quesniaux; Franco Di Padova; Isabelle Maillet; Nicolas Noulin; Isabelle Couillin; René Moser; François Erard; B. Boris Vargaftig; Bernhard Ryffel; Bruno Schnyder

The administration of endotoxins from Gram-negative bacteria induces manifestations reminding of acute respiratory distress syndrome. p38 MAPKs have been implicated in this pathology. In this study, we show that the specific p38 α,β MAPK inhibitor, compound 37, prevents LPS-induced bronchoconstriction and neutrophil recruitment into the lungs and bronchoalveolar space in a dose-dependent manner in C57BL/6 mice. Furthermore, TNF induction and TNF signals were blocked. In TNF-deficient mice, bronchoconstriction, but not neutrophil sequestration, in the lung was abrogated after LPS administration. Therefore, TNF inhibition does not explain all of the effects of the p38 MAPK inhibitor. The p38 α,β MAPK inhibitor also prevented LPS-induced neutrophilia in TNF-deficient mice. In conclusion, LPS provokes acute bronchoconstriction that is TNF dependent and p38 MAPK mediated, whereas the neutrophil recruitment is independent of TNF but depends on LPS/TLR4-induced signals mediated by p38 MAPK.


Journal of Leukocyte Biology | 2006

TLR4 gene dosage contributes to endotoxin-induced acute respiratory inflammation

Dieudonnée Togbe; Silvia Schnyder-Candrian; Bruno Schnyder; Isabelle Couillin; Isabelle Maillet; Franck Bihl; Danielle Malo; Bernhard Ryffel; Valerie Quesniaux

Toll‐like receptor (TLR)4 is critical for endotoxin recognition and cellular responses. Using Tlr4 transgenic mice, we investigated the influence of Tlr4 gene dosage on acute respiratory response to endotoxin. Transgenic mice expressing three, six, or 30 copies of Tlr4, control, and Tlr4‐deficient mice received intranasal administration of lipopolysaccharide (LPS; 10 ug), and the airway response was analyzed by plethysmography, lung histology, cell recruitment, cytokine and chemokine secretion and protein leakage into the bronchoalveolar space. We demonstrate that overexpression of Tlr4 augmented a LPS‐induced bronchoconstrictive effect, as well as tumor necrosis factor and CXC chemokine ligand 1 (keratinocyte‐derived chemokine) production. Neutrophil recruitment, microvascular and alveolar epithelial injury with protein leak in the airways, and damage of the lung microarchitecture were Tlr4 gene dose‐dependently increased. Therefore, the TLR4 expression level determines the extent of acute pulmonary response to inhaled endotoxin, and TLR4 may thus be a valuable target for immunointervention in acute lung inflammation as a result of endotoxins.


Journal of Immunology | 2010

Partial Redundancy of the Pattern Recognition Receptors, Scavenger Receptors, and C-Type Lectins for the Long-Term Control of Mycobacterium tuberculosis Infection

Nathalie Court; Virginie Vasseur; Rachel Vacher; Yury V. Shebzukhov; Vladimir Yeremeev; Isabelle Maillet; Sergei A. Nedospasov; Siamon Gordon; Padraic G. Fallon; Hiroshi Suzuki; Bernhard Ryffel; Valerie Quesniaux

Mycobacterium tuberculosis is recognized by multiple pattern recognition receptors involved in innate immune defense, but their direct role in tuberculosis pathogenesis remains unknown. Beyond TLRs, scavenger receptors (SRs) and C-type lectins may play a crucial role in the sensing and signaling of pathogen motifs, as well as contribute to M. tuberculosis immune evasion. In this study, we addressed the relative role and potential redundancy of these receptors in the host response and resistance to M. tuberculosis infection using mice deficient for representative SR, C-type lectin receptor, or seven transmembrane receptor families. We show that a single deficiency in the class A SR, macrophage receptor with collagenous structure, CD36, mannose receptor, specific ICAM-3 grabbing nonintegrin-related, or F4/80 did not impair the host resistance to acute or chronic M. tuberculosis infection in terms of survival, control of bacterial clearance, lung inflammation, granuloma formation, and cytokine and chemokine expression. Double deficiency for the SRs class A SR types I and II plus CD36 or for the C-type lectins mannose receptor plus specific ICAM-3 grabbing nonintegrin-related had a limited effect on macrophage uptake of mycobacteria and TNF response and on the long-term control of M. tuberculosis infection. By contrast, mice deficient in the TNF, IL-1, or IFN-γ pathway were unable to control acute M. tuberculosis infection. In conclusion, we document a functional redundancy in the pattern recognition receptors, which might cooperate in a coordinated response to sustain the full immune control of M. tuberculosis infection, in sharp contrast with the nonredundant, essential role of the TNF, IL-1, or IFN-γ pathway for host resistance to M. tuberculosis.


Infection and Immunity | 2004

Long-Term Control of Mycobacterium bovis BCG Infection in the Absence of Toll-Like Receptors (TLRs): Investigation of TLR2-, TLR6-, or TLR2-TLR4-Deficient Mice

Delphine Nicolle; Cecile Fremond; Xavier Pichon; André Bouchot; Isabelle Maillet; Bernhard Ryffel; Valerie Quesniaux

ABSTRACT Live mycobacteria have been reported to signal through both Toll-like receptor 2 (TLR2) and TLR4 in vitro. Here, we investigated the role of TLR2 in the long-term control of the infection by the attenuated Mycobacterium, Mycobacterium bovis BCG, in vivo. We sought to determine whether the reported initial defect of bacterial control (K. A. Heldwein et al., J. Leukoc. Biol. 74:277-286, 2003) resolved in the chronic phase of BCG infection. Here we show that TLR2-deficient mice survived a 6-month infection period with M. bovis BCG and were able to control bacterial growth. Granuloma formation, T-cell and macrophage recruitment, and activation were normal. Furthermore, the TLR2 coreceptor, TLR6, is also not required since TLR6-deficient mice were able to control chronic BCG infection. Finally, TLR2-TLR4-deficient mice infected with BCG survived the 8-month observation period. Interestingly, the adaptive response of TLR2- and/or TLR4-deficient mice seemed essentially normal on day 14 or 56 after infection, since T cells responded normally to soluble BCG antigens. In conclusion, our data demonstrate that TLR2, TLR4, or TLR6 are redundant for the control of M. bovis BCG mycobacterial infection.


American Journal of Pathology | 2005

Membrane Tumor Necrosis Factor Confers Partial Protection to Listeria Infection

David Torres; Laure Janot; Valerie Quesniaux; Sergei Grivennikov; Isabelle Maillet; Jonathon Jd Sedgwick; Bernhard Ryffel; François Erard

Tumor necrosis factor (TNF) plays a critical role in the host response to the intracellular pathogen Listeria monocytogenes (LM). TNF exists in soluble and membrane-bound forms and exhibits both unique and overlapping activities. We examined the role of membrane TNF in the absence of secreted TNF for host resistance in knockin mice in which the endogenous TNF was replaced by a regulated, noncleavable allele (mem-TNF). Macrophages expressing mem-TNF produced nitric oxide and displayed normal bactericidal activity. Although mice completely deficient in TNF (TNF(-/-)) succumbed to LM infection within 4 days, mem-TNF mice controlled LM infection at a low dose (10(4) CFU) but succumbed at a higher dose of infection (10(5) CFU). In contrast to complete TNF deficiency, mem-TNF mice developed confined microabscesses that expressed inducible nitric oxide synthase. The transfer of lymphocytes from immunized mem-TNF, but not TNF(-/-), mice protected TNF(-/-) mice from fatal infection. Taken together the data suggest that in the absence of soluble TNF, the presence of membrane-expressed TNF on phagocytes and lymphocytes partially restores host defense to LM infection.


The Journal of Infectious Diseases | 2008

CD14 Works with Toll-Like Receptor 2 to Contribute to Recognition and Control of Listeria monocytogenes Infection

Laure Janot; Thomas Secher; David Torres; Isabelle Maillet; Josef Pfeilschifter; Valerie Quesniaux; Regine Landmann; Bernhard Ryffel; François Erard

Toll-like receptor 2 (TLR2) signaling has been shown to contribute to resistance to Listeria monocytogenes infection, as TLR2-deficient mice have a heightened susceptibility to infection with this organism. Because CD14 may associate with TLR2, we investigated the role of CD14 in Listeria responses. In both CD14-deficient and TLR2-deficient macrophages, nuclear factor kappaB translocation; CD40 and CD86; and the production of interleukin (IL)-12, IL-6, tumor necrosis factor, and nitric oxide are reduced. The absence of CD14 augmented susceptibility to Listeria infection, reduced survival, and diminished bacterial clearance, as observed in TLR2-deficient mice. Compared with C57BL/6 control mice, CD14-deficient mice were observed to have a greater number of hepatic microabscesses containing abundant neutrophils, these abscesses were larger in size, and there was reduced inducible nitric oxide synthase expression. Further, mice that are both CD14 deficient and TLR2 deficient display susceptibility to infection that is comparable to that of mice deficient in either CD14 or TLR2 alone. Therefore, the present data demonstrate the role of CD14 and TLR2 in the recognition and control of Listeria infection and host resistance.

Collaboration


Dive into the Isabelle Maillet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Erard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Schnyder

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Silvia Schnyder-Candrian

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

René Moser

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge