Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Martelly is active.

Publication


Featured researches published by Isabelle Martelly.


Cytokine & Growth Factor Reviews | 1996

GROWTH FACTORS IN SKELETAL MUSCLE REGENERATION

Irene Husmann; Laurent Soulet; Jean Gautron; Isabelle Martelly; Denis Barritault

Adult skeletal muscles are able to regenerate after injury. This process is due to the activation of quiescent muscle precursor cells, also called satellite cells, which proliferate and differentiate to form new myotubes. In this regeneration process, several growth factors which come from the muscle and/or from the motor nerve and inflammatory cells have been shown to play key roles. However, most of our knowledge comes from in vitro studies, where, during myogenesis, proliferation of satellite cells is regulated by FGFs, TGF beta s, PDGF, IGF-I and II, while differentiation appears to be promoted mainly by IGFs. During regeneration in vivo, most of these factors have been shown to operate and interact. Other factors also appear to condition the regeneration process, such as LIF, which acts predominantly as a proliferative factor; and HARP/PTN/HB-GAM and other neurotrophic factors, which may be necessary for the formation of new neuromuscular junctions. TGF beta has a major influence on the reorganisation of the extracellular matrix. This review presents a critical summary of the known effects of growth factors on skeletal muscle regeneration.


Cell and Tissue Research | 1998

Differential myogenicity of satellite cells isolated from extensor digitorum longus (EDL) and soleus rat muscles revealed in vitro

Catherine Lagord; Laurent Soulet; Sylvie Bonavaud; Yann Bassaglia; Christiane Rey; Georgia Barlovatz-Meimon; Jean Gautron; Isabelle Martelly

Abstract Following muscle damage, fast- and slow-contracting fibers regenerate, owing to the activation of their satellite cells. In rats, crush-induced regeneration of extensor digitorum longus (EDL, a fast muscle) and soleus (a slow muscle) present different characteristics, suggesting that intrinsic differences exist among their satellite cells. An in vitro comparative study of the proliferation and differentiation capacities of satellite cells isolated from these muscles is presented there. We observed several differences between soleus and EDL satellite cell cultures plated at high density on gelatin-coated dishes. Soleus satellite cells proliferated more actively and fused into myotubes less efficiently than EDL cells. The rate of muscular creatine kinase enzyme appeared slightly lower in soleus than in EDL cultures at day 11 after plating, when many myotubes were formed, although the levels of muscular creatine kinase mRNA were similar in both cultures. In addition, soleus cultures expressed higher levels of MyoD and myogenin mRNA and of MyoD protein than EDL satellite cell cultures at day 12. A clonal analysis was also carried out on both cell populations in order to determine if distinct lineage features could be detected among satellite cells derived from EDL and soleus muscles. When plated on gelatin at clonal density, cells from both muscles yielded clones within 2 weeks, which stemmed from 3–15 mitotic cycles and were classified into three classes according to their sizes. Myotubes resulting from spontaneous fusion of cells from the progeny of one single cell were seen regardless of the clone size in the standard culture medium we used. The proportion of clones showing myotubes in each class depended on the muscle origin of the cells and was greater in EDL- than in soleus-cell cultures. In addition, soleus cells were shown to improve their differentiation capacity upon changes in the culture condition. Indeed, the proportions of clones showing myotubes, or of cells fusing into myotubes in clones, were increased by treatments with a myotube-conditioned medium, with phorbol ester, and by growth on extra-cellular matrix components (Matrigel). These results, showing differences among satellite cells from fast and slow muscles, might be of importance to muscle repair after trauma and in pathological situations.


PLOS ONE | 2009

Activation of Wnt/β-Catenin Signaling Increases Insulin Sensitivity through a Reciprocal Regulation of Wnt10b and SREBP-1c in Skeletal Muscle Cells

Mounira Abiola; Maryline Favier; Eleni Christodoulou-Vafeiadou; Anne-Lise Pichard; Isabelle Martelly; Isabelle Guillet-Deniau

Background Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity. Methodology/Principal Findings Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes. Conclusions/Significance We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.


Trends in Biochemical Sciences | 1984

Planarian regeneration as a model for cellular activation studies

Isabelle Martelly; Raphaël Franquinet

Abstract Recent advances in the biochemical and cellular aspects of planarian regeneration have increased our understanding of the mechanisms involved in causing proliferation of the blastema cells in regenerating planarians. These mechanisms are very similar to those occurring in other proliferating cellular systems. Thus, planarian regeneration can now be considered as a model for cellular activation studies.


American Journal of Pathology | 2011

Mast Cells Are an Essential Component of Human Radiation Proctitis and Contribute to Experimental Colorectal Damage in Mice

Karl Blirando; Fabien Milliat; Isabelle Martelly; Jean-Christophe Sabourin; Marc Benderitter; Agnès François

Radiation proctitis is characterized by mucosal inflammation followed by adverse chronic tissue remodeling and is associated with substantial morbidity and mortality. Mast cell hyperplasia has been associated with diseases characterized by pathological tissue remodeling and fibrosis. Rectal tissue from patients treated with radiotherapy shows mast cell hyperplasia and activation, suggesting that these cells play a role in the development of radiation-induced sequelae. To investigate the role of mast cells in radiation damage, experimental radiation proctitis was induced in a mast cell-deficient (W(sh)/W(sh)) mouse model. The colon and rectum of W(sh)/W(sh) and wild-type mice were exposed to 27-Gy single-dose irradiation and studied after 2 and 14 weeks. Irradiated rodent rectum showed mast cell hyperplasia. W(sh)/W(sh) mice developed less acute and chronic rectal radiation damage than their control littermates. Tissue protection was associated with increased tissue neutrophil influx and expression of several inflammatory mediators immediately after radiation exposure. It was further demonstrated that mast cell chymase, tryptase, and histamine could change human muscularis propria smooth muscle cells into a migrating/proliferating and proinflammatory phenotype. These data show that mast cells have deleterious effects on both acute and chronic radiation proctitis, possibly by limiting acute tissue neutrophil influx and by favoring phenotypic orientation of smooth muscle cells, thus making them active participants in the radiation-induced inflammatory process and dystrophy of the rectal wall.


Journal of Orthopaedic Research | 2012

Alterations of overused supraspinatus tendon: A possible role of glycosaminoglycans and HARP/pleiotrophin in early tendon pathology

Mohamed Attia; Alex Scott; Arlette Duchesnay; Gilles Carpentier; Louis J. Soslowsky; Minh Bao Huynh; Toin H. van Kuppevelt; Camille Gossard; José Courty; Marie-Claude Tassoni; Isabelle Martelly

Supraspinatus tendon overuse injuries lead to significant pain and disability in athletes and workers. Despite the prevalence and high social cost of these injuries, the early pathological events are not well known. We analyzed the potential relation between glycosaminoglycan (GAG) composition and phenotypic cellular alteration using a rat model of rotator cuff overuse. Total sulfated GAGs increased after 4 weeks of overuse and remained elevated up to 16 weeks. GAG accumulation was preceded by up‐regulation of decorin, versican, and aggrecan proteoglycans (PGs) mRNAs and proteins and biglycan PG mRNA after 2 weeks. At 2 weeks, collagen 1 transcript decreased whereas mRNAs for collagen 2, collagen 3, collagen 6, and the transcription factor Sox9 were increased. Protein levels of heparin affine regulatory peptide (HARP)/pleiotrophin, a cytokine known to regulate developmental chondrocyte formation, were enhanced especially at 4 weeks, without up‐regulation of HARP/pleiotrophin mRNA. Further results suggest that the increased GAGs present in early lesions may sequester HARP/pleiotrophin, which could contribute to a loss of tenocytes phenotype. All these modifications are characteristic of a shift towards the chondrocyte phenotype. Identification of these early changes in the extra‐cellular matrix may help to prevent the progression of the pathology to more disabling, degenerative alterations.


Experimental Physiology | 2005

Effect of anti‐inflammatory and antioxidant drugs on the long‐term repair of severely injured mouse skeletal muscle

Alban Vignaud; José Cebrian; Isabelle Martelly; Jean-Pierre Caruelle; Arnaud Ferry

Non‐steroidal anti‐inflammatory drugs are frequently prescribed after skeletal muscle injury. It is not known whether this type of medication can interfere with muscle repair, although inflammatory response is thought to play an important role in this process. Tibialis anterior muscles of mice were injured by myotoxic agent (snake venom) or crushed. Then, animals were treated daily for 10–14 days with different types of non‐steroidal anti‐inflammatory and antioxidant drugs. The long‐term repair was studied 10–42 days after injury by analysing the recovery of in situ muscle force production, size of regenerating muscle cells and expression of myosin heavy chain. Our results show that diclofenac, diferuloylmethane (curcumin), dimethylthiourea or pyrrolidine dithiocarbamate treatment did not significantly affect muscle recovery after myotoxic injury (P > 0.05). Similarly, diferuloylmethane, dimethyl sulphoxide or indomethacin administration did not markedly change muscle repair after crush injury. However, we noted that high doses (> 2 mg kg−1) of diferuloylmethane or indomethacin increased lethality and reduced muscle repair after crush injury. In conclusion, non‐steroidal anti‐inflammatory and antioxidant drugs did not exhibit long‐term detrimental effects on muscle recovery after injury, except at lethal doses.


Biomaterials | 2011

Synthesis and biological activities of a library of glycosaminoglycans mimetic oligosaccharides

Yasunori Ikeda; Said Charef; Mohand-Ouidir Ouidja; Véronique Barbier-Chassefiere; Fernando Siñeriz; Arlette Duchesnay; Hemalata Narasimprakash; Isabelle Martelly; Patrick Kern; Denis Barritault; Emmanuel Petit; Dulce Papy-Garcia

Biologically active oligosaccharides related to glycosaminoglycans are accumulating increased attention because of their therapeutic potential and for their value in mechanistic studies. Heparan mimetics (HMs) are a family of dextran based polymer known to mimic the properties of glycosaminoglycans, and particularly those of heparan sulfates, as to interact with heparin binding proteins. HMs have shown to stimulate tissue repair in various animal models. Here, we use different methods to depolymerize HMs in order to produce a library of related oligosaccharides and study their biological activities. Since HMs were resistant to endoglycanases activities, depolymerization was achieved by chemical approaches. In vitro biological studies showed that HM oligosaccharides can differentially potentiate FGF-2 mitogenic and antithrombotic activities. In vivo, a selected oligosaccharide (H-dp12) showed to be able to regenerate tissue almost as well as the related polymeric product. The very low anticoagulant activity and high biological activity of low mass oligosaccharides give to these products a new therapeutic potential.


Journal of Biological Chemistry | 2012

Age-related Changes in Rat Myocardium Involve Altered Capacities of Glycosaminoglycans to Potentiate Growth Factor Functions and Heparan Sulfate-altered Sulfation

Minh Bao Huynh; Christophe Morin; Gilles Carpentier; Stephanie Garcia-Filipe; Sofia Talhas-Perret; Véronique Barbier-Chassefiere; Toin H. van Kuppevelt; Isabelle Martelly; Patricia Albanese; Dulce Papy-Garcia

Background: Heparan sulfates (HS) are important cell behavior regulators. Results: With age, HS structural changes affect myocardial growth factor functionalities. Conclusion: This reveals the importance of HS on the control of essential tissue repair effectors during aging. Significance: Changes in cardiac HS may alter tissue homeostasis and impair heart function. This might also limit the success of protein therapies and implantation of therapeutic cells. Glycosaminoglycans (GAGs) are essential components of the extracellular matrix, the natural environment from which cell behavior is regulated by a number or tissue homeostasis guarantors including growth factors. Because most heparin-binding growth factor activities are regulated by GAGs, structural and functional alterations of these polysaccharides may consequently affect the integrity of tissues during critical physiological and pathological processes. Here, we investigated whether the aging process can induce changes in the myocardial GAG composition in rats and whether these changes can affect the activities of particular heparin-binding growth factors known to sustain cardiac tissue integrity. Our results showed an age-dependent increase of GAG levels in the left ventricle. Biochemical and immunohistological studies pointed out heparan sulfates (HS) as the GAG species that increased with age. ELISA-based competition assays showed altered capacities of the aged myocardial GAGs to bind FGF-1, FGF-2, and VEGF but not HB EGF. Mitogenic assays in cultured cells showed an age-dependent decrease of the elderly GAG capacities to potentiate FGF-2 whereas the potentiating effect on VEGF165 was increased, as confirmed by augmented angiogenic cell proliferation in Matrigel plugs. Moreover, HS disaccharide analysis showed considerably altered 6-O-sulfation with modest changes in N- and 2-O-sulfations. Together, these findings suggest a physiological significance of HS structural and functional alterations during aging. This can be associated with an age-dependent decline of the extracellular matrix capacity to efficiently modulate not only the activity of resident or therapeutic growth factors but also the homing of resident or therapeutic cells.


Journal of Cell Science | 2005

A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis.

Isabelle Barbosa; Christophe Morin; Stéphanie Garcia; Arlette Duchesnay; Mustapha Oudghir; Guido J. Jenniskens; Hua-Quan Miao; Scott E. Guimond; Gilles Carpentier; José Cebrian; Jean-Pierre Caruelle; Toin H. van Kuppevelt; Jeremy E. Turnbull; Isabelle Martelly; Dulce Papy-Garcia

Crucial events in myogenesis rely on the highly regulated spatiotemporal distribution of cell surface heparan sulfate proteoglycans to which are associated growth factors, thus creating a specific microenvironment around muscle cells. Most growth factors involved in control of myoblast growth and differentiation are stored in the extracellular matrix through interaction with specific sequences of glycosaminoglycan oligosaccharides, mainly heparan sulfate (HS). Different HS subspecies revealed by specific antibodies, have been shown to provide spatiotemporal regulation during muscle development. We have previously shown that glycosaminoglycan (GAG) mimetics called RGTA (ReGeneraTing Agent), stimulate muscle precursor cell growth and differentiation. These data suggest an important role of GAGs during myogenesis; however, little is yet known about the different species of GAGs synthesized during myogenesis and their metabolic regulation. We therefore quantified GAGs during myogenesis of C2.7 cells and show that the composition of GAG species was modified during myogenic differentiation. In particular, HS levels were increased during this process. In addition, the GAG mimetic RGTA, which stimulated both growth and differentiation of C2.7 cells, increased the total amount of GAG produced by these cells without significantly altering their rate of sulfation. RGTA treatment further enhanced HS levels and changed its sub-species composition. Although mRNA levels of the enzymes involved in HS biosynthesis were almost unchanged during myogenic differentiation, heparanase mRNA levels decreased. RGTA did not markedly alter these levels. Here we show that the effects of RGTA on myoblast growth and differentiation are in part mediated through an alteration of GAG species and provide an important insight into the role of these molecules in normal or pathologic myogenic processes.

Collaboration


Dive into the Isabelle Martelly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge