Isabelle Migeotte
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Isabelle Migeotte.
Journal of Experimental Medicine | 2003
Valérie Wittamer; Jean-Denis Franssen; Marisa Vulcano; Jean François Mirjolet; Emmanuel Le Poul; Isabelle Migeotte; Stephane Brezillon; Richard Tyldesley; Cédric Blanpain; Michel Detheux; Alberto Mantovani; Silvano Sozzani; Gilbert Vassart; Marc Parmentier; David Communi
Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (APCs) that play key roles in both innate and adaptive immunity. ChemR23 is an orphan G protein–coupled receptor related to chemokine receptors, which is expressed specifically in these cell types. Here we present the characterization of chemerin, a novel chemoattractant protein, which acts through ChemR23 and is abundant in a diverse set of human inflammatory fluids. Chemerin is secreted as a precursor of low biological activity, which upon proteolytic cleavage of its COOH-terminal domain, is converted into a potent and highly specific agonist of ChemR23, the chemerin receptor. Activation of chemerin receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42–p44 MAP kinases, through the Gi class of heterotrimeric G proteins. Chemerin is structurally and evolutionary related to the cathelicidin precursors (antibacterial peptides), cystatins (cysteine protease inhibitors), and kininogens. Chemerin was shown to promote calcium mobilization and chemotaxis of immature DCs and macrophages in a ChemR23-dependent manner. Therefore, chemerin appears as a potent chemoattractant protein of a novel class, which requires proteolytic activation and is specific for APCs.
Journal of Biological Chemistry | 1999
Cédric Blanpain; Benhur Lee; Jalal Vakili; Benjamin J. Doranz; Cédric Govaerts; Isabelle Migeotte; Matthew Sharron; Vincent Dupriez; Gilbert Vassart; Robert W. Doms; Marc Parmentier
CCR5 is the major coreceptor for macrophage-tropic human immunodeficiency virus type I (HIV-1). For most G-protein-coupled receptors that have been tested so far, the disulfide bonds linking together the extracellular loops (ECL) are required for maintaining the structural integrity necessary for ligand binding and receptor activation. A natural mutation affecting Cys20, which is thought to form a disulfide bond with Cys269, has been described in various human populations, although the consequences of this mutation for CCR5 function are not known. Using site-directed mutagenesis, we mutated the four extracellular cysteines of CCR5 singly or in combination to investigate their role in maintaining the structural conformation of the receptor, its ligand binding and signal transduction properties, and its ability to function as a viral coreceptor. Alanine substitution of any single Cys residue reduced surface expression levels by 40–70%. However, mutation of Cys101 or Cys178, predicted to link ECL1 and ECL2 of the receptor, abolished recognition of CCR5 by a panel of conformation sensitive anti-CCR5 antibodies. The effects of the mutations on receptor expression and conformation were partially temperature-sensitive, with partial restoration of receptor expression and conformation achieved by incubating cells at 32 °C. All cysteine mutants were unable to bind detectable levels of MIP-1β, and did not respond functionally to CCR5 agonists. Surprisingly, all cysteine mutants did support infection by R5 strains of HIV, though at reduced levels. These results indicate that both disulfide bonds of CCR5 are necessary for maintaining the structural integrity of the receptor necessary for ligand binding and signaling. Env binding and the mechanisms of HIV entry appear much less sensitive to alterations of CCR5 conformation.
Journal of Experimental Medicine | 2005
Isabelle Migeotte; Elena Riboldi; Jean-Denis Franssen; Françoise Grégoire; Cecile Loison; Valérie Wittamer; Michel Detheux; Patrick Robberecht; Sabine Costagliola; Gilbert Vassart; Silvano Sozzani; Marc Parmentier; David Communi
Chemotaxis of dendritic cells (DCs) and monocytes is a key step in the initiation of an adequate immune response. Formyl peptide receptor (FPR) and FPR-like receptor (FPRL)1, two G protein–coupled receptors belonging to the FPR family, play an essential role in host defense mechanisms against bacterial infection and in the regulation of inflammatory reactions. FPRL2, the third member of this structural family of chemoattractant receptors, is characterized by its specific expression on monocytes and DCs. Here, we present the isolation from a spleen extract and the functional characterization of F2L, a novel chemoattractant peptide acting specifically through FPRL2. F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein, an intracellular tetrapyrolle-binding protein. The peptide binds and activates FPRL2 in the low nanomolar range, which triggers intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of extracellular signal–regulated kinase 1/2 mitogen-activated protein kinases through the Gi class of heterotrimeric G proteins. When tested on monocytes and monocyte-derived DCs, F2L promotes calcium mobilization and chemotaxis. Therefore, F2L appears as a new natural chemoattractant peptide for DCs and monocytes, and the first potent and specific agonist of FPRL2.
PLOS Biology | 2010
Isabelle Migeotte; Tatiana Omelchenko; Alan Hall; Kathryn V. Anderson
Live imaging and analysis of conditional mutants show that the embryonic organizer that determines the anterior-posterior axis in the mouse embryo moves by Rac1-dependent collective cell migration.
Journal of Neurobiology | 1998
Christophe De Hauwer; Isabelle Camby; Francis Darro; Isabelle Migeotte; Christine Decaestecker; Claude Verbeek; André Danguy; Jean Lambert Pasteels; Jacques Brotchi; Isabelle Salmon; Philippe Van Ham; Robert Kiss
Whether they are of low or high histopathological grade, human astrocytic tumors are characterized by a marked propensity to diffuse into large areas of normal brain parenchyma. This invasion relates mainly to cell motility, which enables individual cell migration to take place. The present study characterizes in vitro the gastrin-mediated effects on both the growth (cell proliferation vs. cell death) and motility dynamics of the human U87 and U373 glioblastoma cell lines. A computer-assisted phase-contrast microscope was used to track the number of mitoses versus cell deaths every 4 min over a 72-h period and so to quantitatively describe the trajectories of living U373 and U87 cells growing on plastic supports in culture media both with and without the addition of 0.1, 5, or 100 nM gastrin. While 5 or 100 nM gastrin only weakly (p < .05 to p < .01) increased cell proliferation in the U87 cell line and not in U373 one, it very significantly (p < .001) inhibited the amount of cell death at 5 and 100 nM in both the U87 and U373 lines. In addition, 5 nM gastrin markedly inhibited cell mobility in U87 (p < .00001) and U373 (p < .0001) glioblastoma models. All these data strongly suggest that gastrin plays a major role in the biological behavior of the in vitro U87 and U373 human glioblastoma cell lines in matters concerning their levels of cell motility and growth dynamics.
Journal of Immunology | 2007
Ji-Liang Gao; Aude Guillabert; Jinyue Hu; Yingying Le; Eneko Urizar; Eva Seligman; Kevin J. Fang; Xiaoning Yuan; Virginie Imbault; David Communi; Ji Ming Wang; Marc Parmentier; Philip M. Murphy; Isabelle Migeotte
F2L (formylpeptide receptor (FPR)-like (FPRL)-2 ligand), a highly conserved acetylated peptide derived from the amino-terminal cleavage of heme-binding protein, is a potent chemoattractant for human monocytes and dendritic cells, and inhibits LPS-induced human dendritic cell maturation. We recently reported that F2L is able to activate the human receptors FPRL-1 and FPRL2, two members of the FPR family, with highest selectivity and affinity for FPRL2. To facilitate delineation of mechanisms of F2L action in vivo, we have now attempted to define its mouse receptors. This is complicated by the nonequivalence of the human and mouse FPR gene families (three vs at least eight members, respectively). When cell lines were transfected with plasmids encoding the eight mouse receptors, only the one expressing the receptor Fpr2 responded to F2L (EC50 ∼400 nM for both human and mouse F2L in both calcium flux and cAMP inhibition assays). This value is similar to F2L potency at human FPRL1. Consistent with this, mouse neutrophils, which like macrophages and dendritic cells express Fpr2, responded to human and mouse F2L in both calcium flux and chemotaxis assays with EC50 values similar to those found for Fpr2-expressing cell lines (∼500 nM). Moreover, neutrophils from mice genetically deficient in Fpr2 failed to respond to F2L. Thus, Fpr2 is a mouse receptor for F2L, and can be targeted for the study of F2L action in mouse models.
Journal of Medical Genetics | 2013
Nicolas Simonis; Isabelle Migeotte; Nelle Lambert; Camille Perazzolo; Deepthi De Silva; Boyan Dimitrov; Claudine Heinrichs; Sandra Janssens; Bronwyn Kerr; Geert Mortier; Guy Van Vliet; Philippe Lepage; Georges Casimir; Marc Abramowicz; Guillaume Smits; Catheline Vilain
Background Harstfield syndrome is the rare and unique association of holoprosencephaly (HPE) and ectrodactyly, with or without cleft lip and palate, and variable additional features. All the reported cases occurred sporadically. Although several causal genes of HPE and ectrodactyly have been identified, the genetic cause of Hartsfield syndrome remains unknown. We hypothesised that a single key developmental gene may underlie the co-occurrence of HPE and ectrodactyly. Methods We used whole exome sequencing in four isolated cases including one case-parents trio, and direct Sanger sequencing of three additional cases, to investigate the causative variants in Hartsfield syndrome. Results We identified a novel FGFR1 mutation in six out of seven patients. Affected residues are highly conserved and are located in the extracellular binding domain of the receptor (two homozygous mutations) or the intracellular tyrosine kinase domain (four heterozygous de novo variants). Strikingly, among the six novel mutations, three are located in close proximity to the ATPs phosphates or the coordinating magnesium, with one position required for kinase activity, and three are adjacent to known mutations involved in Kallmann syndrome plus other developmental anomalies. Conclusions Dominant or recessive FGFR1 mutations are responsible for Hartsfield syndrome, consistent with the known roles of FGFR1 in vertebrate ontogeny and conditional Fgfr1-deficient mice. Our study shows that, in humans, lack of accurate FGFR1 activation can disrupt both brain and hand/foot midline development, and that FGFR1 loss-of-function mutations are responsible for a wider spectrum of clinical anomalies than previously thought, ranging in severity from seemingly isolated hypogonadotropic hypogonadism, through Kallmann syndrome with or without additional features, to Hartsfield syndrome at its most severe end.
European Journal of Immunology | 2002
Isabelle Migeotte; Jean-Denis Franssen; Stanislas Goriely; Fabienne Willems; Marc Parmentier
Human chemokine receptor (HCR) is a putative chemokine receptor sharing high similarity with CCR1, CCR2, CCR3 and CCR5. Its gene is located within the main cluster of CC‐chemokine receptor genes, in the 3p21 region of the human genome. We generated monoclonal antibodies directed at human HCR, and studied its distribution in human leukocyte populations and cell lines, and its regulation following maturation or activation of these populations. In peripheral blood leukocytes, HCR is expressed on CD4+ and CD8+ T lymphocytes, including most memory and part of naive cells, but is absent from B cells. Expression of HCR was enhanced following stimulation of T cells by OKT3 and IL‐2. HCR is present on monocytes and macrophages. Monocyte‐derived dendritic cells harbored HCR, and expression was enhanced following stimulation by lipopolysaccharides, poly (I:C), IFN‐γ or CD40L. Neutrophils strongly expressed HCR. A similar distribution was found in bone marrow,and HCR was also expressed in CD34+ precursors. Expression of HCR and its regulation were confirmed by real‐time PCR. In a panel of human tissues, we found abundant HCR transcripts in thymus, spleen, lymph nodes and lung. This large distribution across leukocyte populations, and the up‐regulation during DC maturation, represent a new profile among chemokine receptors. We speculate that HCR responds to inflammatory chemokines, and might be involved in the interaction between antigen presenting and T cells, and in hematopoiesis.
Development | 2011
Isabelle Migeotte; Joaquim Grego-Bessa; Kathryn V. Anderson
The establishment of the mammalian body plan depends on signal-regulated cell migration and adhesion, processes that are controlled by the Rho family of GTPases. Here we use a conditional allele of Rac1, the only Rac gene expressed early in development, to define its roles in the gastrulating mouse embryo. Embryos that lack Rac1 in the epiblast (Rac1Δepi) initiate development normally: the signaling pathways required for gastrulation are active, definitive endoderm and all classes of mesoderm are specified, and the neural plate is formed. After the initiation of gastrulation, Rac1Δepi embryos have an enlarged primitive streak, make only a small amount of paraxial mesoderm, and the lateral anlage of the heart do not fuse at the midline. Because these phenotypes are also seen in Nap1 mutants, we conclude that Rac1 acts upstream of the Nap1/WAVE complex to promote migration of the nascent mesoderm. In addition to migration phenotypes, Rac1Δepi cells fail to adhere to matrix, which leads to extensive cell death. Cell death is largely rescued in Rac1Δepi mutants that are heterozygous for a null mutation in Pten, providing evidence that Rac1 is required to link signals from the basement membrane to activation of the PI3K-Akt pathway in vivo. Surprisingly, the frequency of apoptosis is greater in the anterior half of the embryo, suggesting that cell survival can be promoted either by matrix adhesion or by signals from the posterior primitive streak. Rac1 also has essential roles in morphogenesis of the posterior notochordal plate (the node) and the midline.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Patrycja M. Dubielecka; Kathrin I. Ladwein; Xiaoling Xiong; Isabelle Migeotte; Anna Chorzalska; Kathryn V. Anderson; Janet A. Sawicki; Klemens Rottner; Theresia E. B. Stradal; Leszek Kotula
Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex. Changes in motility of Abi1-KO cells were manifested by a decreased migration rate and distance but increased directional persistence. Although these phenotypes did not correlate with peripheral ruffling, which was unaffected, Abi1-KO cells exhibited decreased dorsal ruffling. Western blotting analysis of Abi1-KO cell lysates indicated reduced levels of the WAVE complex components WAVE1 and WAVE2, Nap1, and Sra-1/PIR121. Although relative Abi2 levels were more than doubled in Abi1-KO cells, the absolute Abi2 expression in these cells amounted only to a fifth of Abi1 levels in the control cell line. This finding suggests that the presence of Abi1 is critical for the integrity and stability of WAVE complex and that Abi2 levels are not sufficiently increased to compensate fully for the loss of Abi1 in KO cells and to restore the integrity and function of the WAVE complex. The essential function of Abi1 in WAVE complexes and their regulation might explain the observed embryonic lethality of Abi1-deficient embryos, which survived until approximately embryonic day 11.5 and displayed malformations in the developing heart and brain. Cells lacking Abi1 and the conditional Abi1-KO mouse will serve as critical models for defining Abi1 function.