Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Morlais is active.

Publication


Featured researches published by Isabelle Morlais.


PLOS Pathogens | 2012

Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection

Anne Boissière; Majoline T. Tchioffo; Dipankar Bachar; Luc Abate; Alexandra Marie; Sandrine E. Nsango; Hamid Reza Shahbazkia; Parfait Awono-Ambene; Elena A. Levashina; Richard Christen; Isabelle Morlais

The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.


PLOS Pathogens | 2009

Anopheles gambiae PGRPLC-Mediated Defense against Bacteria Modulates Infections with Malaria Parasites

Stephan Meister; Bogos Agianian; Fanny Turlure; Angela Relógio; Isabelle Morlais; Fotis C. Kafatos; George K. Christophides

Recognition of peptidoglycan (PGN) is paramount for insect antibacterial defenses. In the fruit fly Drosophila melanogaster, the transmembrane PGN Recognition Protein LC (PGRP-LC) is a receptor of the Imd signaling pathway that is activated after infection with bacteria, mainly Gram-negative (Gram−). Here we demonstrate that bacterial infections of the malaria mosquito Anopheles gambiae are sensed by the orthologous PGRPLC protein which then activates a signaling pathway that involves the Rel/NF-κB transcription factor REL2. PGRPLC signaling leads to transcriptional induction of antimicrobial peptides at early stages of hemolymph infections with the Gram-positive (Gram+) bacterium Staphylococcus aureus, but a different signaling pathway might be used in infections with the Gram− bacterium Escherichia coli. The size of mosquito symbiotic bacteria populations and their dramatic proliferation after a bloodmeal, as well as intestinal bacterial infections, are also controlled by PGRPLC signaling. We show that this defense response modulates mosquito infection intensities with malaria parasites, both the rodent model parasite, Plasmodium berghei, and field isolates of the human parasite, Plasmodium falciparum. We propose that the tripartite interaction between mosquito microbial communities, PGRPLC-mediated antibacterial defense and infections with Plasmodium can be exploited in future interventions aiming to control malaria transmission. Molecular analysis and structural modeling provided mechanistic insights for the function of PGRPLC. Alternative splicing of PGRPLC transcripts produces three main isoforms, of which PGRPLC3 appears to have a key role in the resistance to bacteria and modulation of Plasmodium infections. Structural modeling indicates that PGRPLC3 is capable of binding monomeric PGN muropeptides but unable to initiate dimerization with other isoforms. A dual role of this isoform is hypothesized: it sequesters monomeric PGN dampening weak signals and locks other PGRPLC isoforms in binary immunostimulatory complexes further enhancing strong signals.


Malaria Journal | 2008

Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species

Clotilde Ribaut; Antoine Berry; Séverine Chevalley; Karine Reybier; Isabelle Morlais; Daniel Parzy; Françoise Nepveu; Françoise Benoit-Vical; Alexis Valentin

BackgroundParasite concentration methods facilitate molecular, biochemical and immunological research on the erythrocytic stages of Plasmodium. In this paper, an adaptation of magnetic MACS® columns for the purification of human Plasmodium species is presented. This method was useful for the concentration/purification of either schizonts or gametocytes.Results and conclusionsThe magnetic removal of non-parasitized red blood cells (in vivo and in vitro) using magnetic columns (MACS) was evaluated. This easy-to-use technique enriched schizonts and gametocytes from Plasmodium falciparum in vitro cultures with a very high degree of purity. In addition, all haemozoin-containing stages (schizonts and/or gametocytes) from the peripheral blood of infected patients could be concentrated using this method. This method is particularly useful for the concentration of non-falciparum species, which do not grow in culture and are otherwise difficult to obtain in large amounts.


EMBO Reports | 2006

Anopheles and Plasmodium: from laboratory models to natural systems in the field.

Anna Cohuet; Mike A. Osta; Isabelle Morlais; Parfait Awono-Ambene; Kristin Michel; Frédéric Simard; George K. Christophides; Didier Fontenille; Fotis C. Kafatos

Parasites that cause malaria must complete a complex life cycle in Anopheles vector mosquitoes in order to be transmitted from human to human. Previous gene‐silencing studies have shown the influence of mosquito immunity in controlling the development of Plasmodium. Thus, parasite survival to the oocyst stage increased when the parasite antagonist gene LRIM1 (leucine‐rich repeat immune protein 1) of the mosquito was silenced, but decreased when the C‐type lectin agonist gene CTL4 or CTLMA2 (CTL mannose binding 2) was silenced. However, such effects were shown for infections of the human mosquito vector Anopheles gambiae with the rodent parasite Plasmodium berghei. Here, we report the first results of A. gambiae gene silencing on infection by sympatric field isolates of the principal human pathogen P. falciparum. In contrast with the results obtained with the rodent parasite, silencing of the same three genes had no effect on human parasite development. These results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions.


PLOS ONE | 2012

Mosquito Feeding Assays to Determine the Infectiousness of Naturally Infected Plasmodium falciparum Gametocyte Carriers

Teun Bousema; Rhoel R. Dinglasan; Isabelle Morlais; Louis C. Gouagna; Travis van Warmerdam; Parfait Awono-Ambene; Sarah Bonnet; Mouctar Diallo; Mamadou Coulibaly; Timoléon Tchuinkam; Bert Mulder; Geoff Targett; Chris Drakeley; Colin J. Sutherland; Vincent Robert; Ogobara K. Doumbo; Yeya Tiemoko Touré; Patricia M. Graves; Will Roeffen; Robert W. Sauerwein; Ashley Birkett; Emily Locke; Merribeth J. Morin; Yimin Wu; Thomas S. Churcher

Introduction In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. Methods We compared two commonly used mosquito feeding assay procedures: direct skin feeding assays and membrane feeding assays. Three conditions under which membrane feeding assays are performed were examined: assays with i) whole blood, ii) blood pellets resuspended with autologous plasma of the gametocyte carrier, and iii) blood pellets resuspended with heterologous control serum. Results 930 transmission experiments from Cameroon, The Gambia, Mali and Senegal were included in the analyses. Direct skin feeding assays resulted in higher mosquito infection rates compared to membrane feeding assays (odds ratio 2.39, 95% confidence interval 1.94–2.95) with evident heterogeneity between studies. Mosquito infection rates in membrane feeding assays and direct skin feeding assays were strongly correlated (p<0.0001). Replacing the plasma of the gametocyte donor with malaria naïve control serum resulted in higher mosquito infection rates compared to own plasma (OR 1.92, 95% CI 1.68–2.19) while the infectiousness of gametocytes may be reduced during the replacement procedure (OR 0.60, 95% CI 0.52–0.70). Conclusions Despite a higher efficiency of direct skin feeding assays, membrane feeding assays appear suitable tools to compare the infectiousness between individuals and to evaluate transmission-reducing interventions. Several aspects of membrane feeding procedures currently lack standardization; this variability makes comparisons between laboratories challenging and should be addressed to facilitate future testing of transmission-reducing interventions.


PLOS Pathogens | 2009

Fine Pathogen Discrimination within the APL1 Gene Family Protects Anopheles gambiae against Human and Rodent Malaria Species

Christian Mitri; Jean Claude Jacques; Isabelle Thiery; Michelle M. Riehle; Jiannong Xu; Emmanuel Bischoff; Isabelle Morlais; Sandrine E. Nsango; Kenneth D. Vernick; Catherine Bourgouin

Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share ≥50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely related eukaryotic pathogens than has been previously recognized.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Increased melanizing activity in Anopheles gambiae does not affect development of Plasmodium falciparum

Kristin Michel; Chansak Suwanchaichinda; Isabelle Morlais; Louis Lambrechts; Anna Cohuet; Parfait Awono-Ambene; Frédéric Simard; Didier Fontenille; Michael R. Kanost; Fotis C. Kafatos

Serpins are central to the modulation of various innate immune responses in insects and are suspected to influence the outcome of malaria parasite infection in mosquito vectors. Three Anopheles gambiae serpins (SRPN1, -2, and -3) were tested for their ability to inhibit the prophenoloxidase cascade, a key regulatory process in the melanization response. Recombinant SRPN1 and -2 can bind and inhibit a heterologous phenoloxidase-activating protease and inhibit phenoloxidase activation in vitro. Using a reverse genetics approach, we studied the effect of SRPN2 on melanization in An. gambiae adult females in vivo. Depletion of SRPN2 from the mosquito hemolymph increases melanin deposition on foreign surfaces such as negatively charged Sephadex beads. As reported, the knockdown of SRPN2 adversely affects the ability of the rodent malaria parasite Plasmodium berghei to invade the midgut epithelium and develop into oocysts. Importantly, we tested whether the absence of SRPN2 from the hemolymph influences Plasmodium falciparum development. RNAi silencing of SRPN2 in an An. gambiae strain originally established from local populations in Yaoundé, Cameroon, did not influence the development of autochthonous field isolates of P. falciparum. This study suggests immune evasion strategies of the human malaria parasite and emphasizes the need to study mosquito innate immune responses toward the pathogens they transmit in natural vector–parasite combinations.


PLOS Pathogens | 2008

Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa.

Antonio M. Mendes; Timm Schlegelmilch; Anna Cohuet; Parfait Awono-Ambene; Maria De Iorio; Didier Fontenille; Isabelle Morlais; George K. Christophides; Fotis C. Kafatos; Dina Vlachou

In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate mosquito gene regulators of P. berghei development are also pertinent to A. gambiae/P. falciparum interactions in semi-natural conditions, using field isolates of this parasite and geographically related mosquitoes. We detected broadly similar albeit not identical transcriptional responses of these genes to the two parasite species. Gene silencing established that two genes affect similarly both parasites: infections are hindered by the intracellular local activator of actin cytoskeleton dynamics, WASP, but promoted by the hemolymph lipid transporter, ApoII/I. Since P. berghei is not a natural parasite of A. gambiae, these data suggest that the effects of these genes have not been drastically altered by constant interaction and co-evolution of A. gambiae and P. falciparum; this conclusion allowed us to investigate further the mode of action of these two genes in the laboratory model system using a suite of genetic tools and infection assays. We showed that both genes act at the level of midgut invasion during the parasites developmental transition from ookinete to oocyst. ApoII/I also affects the early stages of oocyst development. These are the first mosquito genes whose significant effects on P. falciparum field isolates have been established by direct experimentation. Importantly, they validate for semi-field human malaria transmission the concept of parasite antagonists and agonists.


PLOS ONE | 2008

Anopheles gambiae APL1 Is a Family of Variable LRR Proteins Required for Rel1-Mediated Protection from the Malaria Parasite, Plasmodium berghei

Michelle M. Riehle; Jiannong Xu; Brian P. Lazzaro; Susan M. Rottschaefer; Boubacar Coulibaly; Madjou Sacko; Oumou Niaré; Isabelle Morlais; Sekou F. Traore; Kenneth D. Vernick

Background We previously identified by genetic mapping an Anopheles gambiae chromosome region with strong influence over the outcome of malaria parasite infection in nature. Candidate gene studies in the genetic interval, including functional tests using the rodent malaria parasite Plasmodium berghei, identified a novel leucine-rich repeat gene, APL1, with functional activity against P. berghei. Principal Findings Manual reannotation now reveals APL1 to be a family of at least 3 independently transcribed genes, APL1A, APL1B, and APL1C. Functional dissection indicates that among the three known APL1 family members, APL1C alone is responsible for host defense against P. berghei. APL1C functions within the Rel1-Cactus immune signaling pathway, which regulates APL1C transcript and protein abundance. Gene silencing of APL1C completely abolishes Rel1-mediated host protection against P. berghei, and thus the presence of APL1C is required for this protection. Further highlighting the influence of this chromosome region, allelic haplotypes at the APL1 locus are genetically associated with and have high explanatory power for the success or failure of P. berghei parasite infection. Conclusions APL1C functions as a required transducer of Rel1-dependent immune signal(s) to efficiently protect mosquitoes from P. berghei infection, and allelic genetic haplotypes of the APL1 locus display distinct levels of susceptibility and resistance to P. berghei.


PLOS Pathogens | 2010

Polymorphisms in Anopheles gambiae Immune Genes Associated with Natural Resistance to Plasmodium falciparum

Caroline Harris; Louis Lambrechts; François Rousset; Luc Abate; Sandrine E. Nsango; Didier Fontenille; Isabelle Morlais; Anna Cohuet

Many genes involved in the immune response of Anopheles gambiae, the main malaria vector in Africa, have been identified, but whether naturally occurring polymorphisms in these genes underlie variation in resistance to the human malaria parasite, Plasmodium falciparum, is currently unknown. Here we carried out a candidate gene association study to identify single nucleotide polymorphisms (SNPs) associated with natural resistance to P. falciparum. A. gambiae M form mosquitoes from Cameroon were experimentally challenged with three local wild P. falciparum isolates. Statistical associations were assessed between 157 SNPs selected from a set of 67 A. gambiae immune-related genes and the level of infection. Isolate-specific associations were accounted for by including the effect of the isolate in the analysis. Five SNPs were significantly associated to the infection phenotype, located within or upstream of AgMDL1, CEC1, Sp PPO activate, Sp SNAKElike, and TOLL6. Low overall and local linkage disequilibrium indicated high specificity in the loci found. Association between infection phenotype and two SNPs was isolate-specific, providing the first evidence of vector genotype by parasite isolate interactions at the molecular level. Four SNPs were associated to either oocyst presence or load, indicating that the genetic basis of infection prevalence and intensity may differ. The validity of the approach was verified by confirming the functional role of Sp SNAKElike in gene silencing assays. These results strongly support the role of genetic variation within or near these five A. gambiae immune genes, in concert with other genes, in natural resistance to P. falciparum. They emphasize the need to distinguish between infection prevalence and intensity and to account for the genetic specificity of vector-parasite interactions in dissecting the genetic basis of Anopheles resistance to human malaria.

Collaboration


Dive into the Isabelle Morlais's collaboration.

Top Co-Authors

Avatar

Parfait Awono-Ambene

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Anna Cohuet

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Luc Abate

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Didier Fontenille

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Majoline T. Tchioffo

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédéric Simard

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge