Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Peiffer is active.

Publication


Featured researches published by Isabelle Peiffer.


Genome Research | 2015

The chromatin environment shapes DNA replication origin organization and defines origin classes

Christelle Cayrou; Benoit Ballester; Isabelle Peiffer; Romain Fenouil; Philippe Coulombe; Jean-Christophe Andrau; Jacques van Helden; Marcel Méchali

To unveil the still-elusive nature of metazoan replication origins, we identified them genome-wide and at unprecedented high-resolution in mouse ES cells. This allowed initiation sites (IS) and initiation zones (IZ) to be differentiated. We then characterized their genetic signatures and organization and integrated these data with 43 chromatin marks and factors. Our results reveal that replication origins can be grouped into three main classes with distinct organization, chromatin environment, and sequence motifs. Class 1 contains relatively isolated, low-efficiency origins that are poor in epigenetic marks and are enriched in an asymmetric AC repeat at the initiation site. Late origins are mainly found in this class. Class 2 origins are particularly rich in enhancer elements. Class 3 origins are the most efficient and are associated with open chromatin and polycomb protein-enriched regions. The presence of Origin G-rich Repeated elements (OGRE) potentially forming G-quadruplexes (G4) was confirmed at most origins. These coincide with nucleosome-depleted regions located upstream of the initiation sites, which are associated with a labile nucleosome containing H3K64ac. These data demonstrate that specific chromatin landscapes and combinations of specific signatures regulate origin localization. They explain the frequently observed links between DNA replication and transcription. They also emphasize the plasticity of metazoan replication origins and suggest that in multicellular eukaryotes, the combination of distinct genetic features and chromatin configurations act in synergy to define and adapt the origin profile.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Synergic reprogramming of mammalian cells by combined exposure to mitotic Xenopus egg extracts and transcription factors

Olivier Ganier; Stéphane Bocquet; Isabelle Peiffer; Vincent Brochard; Philippe Arnaud; Aurore Puy; Alice Jouneau; Robert Feil; Jean Paul Renard; Marcel Méchali

Transfer of somatic cell nuclei to enucleated eggs and ectopic expression of specific transcription factors are two different reprogramming strategies used to generate pluripotent cells from differentiated cells. However, these methods are poorly efficient, and other unknown factors might be required to increase their success rate. Here we show that Xenopus egg extracts at the metaphase stage (M phase) have a strong reprogramming activity on mouse embryonic fibroblasts (MEFs). First, they reset replication properties of MEF nuclei toward a replication profile characteristic of early development, and they erase several epigenetic marks, such as trimethylation of H3K9, H3K4, and H4K20. Second, when MEFs are reversibly permeabilized in the presence of M-phase Xenopus egg extracts, they show a transient increase in cell proliferation, form colonies, and start to express specific pluripotency markers. Finally, transient exposure of MEF nuclei to M-phase Xenopus egg extracts increases the success of nuclear transfer to enucleated mouse oocytes and strongly synergizes with the production of pluripotent stem cells by ectopic expression of transcription factors. The mitotic stage of the egg extract is crucial, because none of these effects is detected when using interphasic Xenopus egg extracts. Our data demonstrate that mitosis is essential to make mammalian somatic nuclei prone to reprogramming and that, surprisingly, the heterologous Xenopus system has features that are conserved enough to remodel mammalian nuclei.


Stem Cells International | 2011

Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells

Romain Barbet; Isabelle Peiffer; Antoinette Hatzfeld; Pierre Charbord; Jacques Hatzfeld

We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1low, BMPR1Blow, FLT4low, LRRC32low, and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.


Molecular Cell | 2015

MCM9 Is Required for Mammalian DNA Mismatch Repair.

Sabine Traver; Philippe Coulombe; Isabelle Peiffer; James R. A. Hutchins; Magali Kitzmann; Daniel Latreille; Marcel Méchali

DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects DNA polymerase errors during replication to maintain genomic integrity. In E. coli, the DNA helicase UvrD is implicated in MMR, yet an analogous helicase activity has not been identified in eukaryotes. Here, we show that mammalian MCM9, a protein involved in replication and homologous recombination, forms a complex with MMR initiation proteins (MSH2, MSH3, MLH1, PMS1, and the clamp loader RFC) and is essential for MMR. Mcm9-/- cells display microsatellite instability and MMR deficiency. The MCM9 complex has a helicase activity that is required for efficient MMR since wild-type but not helicase-dead MCM9 restores MMR activity in Mcm9-/- cells. Moreover, MCM9 loading onto chromatin is MSH2-dependent, and in turn MCM9 stimulates the recruitment of MLH1 to chromatin. Our results reveal a role for MCM9 and its helicase activity in mammalian MMR.


Stem Cells and Development | 2008

Use of Xenofree Matrices and Molecularly-Defined Media to Control Human Embryonic Stem Cell Pluripotency: Effect of Low Physiological TGF-β Concentrations

Isabelle Peiffer; Romain Barbet; Yi-Ping Zhou; Ma-Lin Li; Marie-Noëlle Monier; Antoinette Hatzfeld; Jacques Hatzfeld

To monitor human embryonic stem cell (hESC) self-renewal without differentiation, we used quantitative RT-PCR to study a selection of hESC genes, including markers for self-renewal, commitment/differentiation, and members of the TGF-beta superfamily and DAN gene family. Indeed, low commitment/differentiation gene expression, together with a significant self-renewal gene expres sion, provides a better pluripotency index than self-renewal genes alone. We demonstrate that matrices derived from human mesenchymal stem cells (hMSCs) can advantageously replace murine embryonic fibroblasts (MEF) or hMSC feeders. Moreover, a xenofree molecularly-defined SBX medium, containing a synthetic lipid carrier instead of albumin, can replace SR medium. The number of selected differentiation genes expressed by hESCs in these culture conditions was significantly lower than those expressed on MEF feeders in SR medium. In SBX, the positive effect of a non-physiological concentration of activin A (10-30 ng/mL) to reduce differentiation during self-renewal could also be obtained by physiological concentrations of TGF-beta(100-300 pg/mL). In contrast, these TGF-beta concentrations added to activin favored differentiation as previously observed with TGF-beta concentrations of 1 ng/mL or more. Compared to SR-containing medium, SBX medium promoted down-regulation of CER1 and LEFTIES and up-regulation of GREM1. Thus these genes better control self-renewal and pluripotency and prevent differentiation. A strategy is proposed to analyze, in more physiological, xenofree, molecularly-defined media and matrices, the numerous genes with still unknown functions controlling hESCs or human-induced pluripotent stem cells (iPS).


Cell Cycle | 2012

Expression of the 49 human ATP binding cassette (ABC) genes in pluripotent embryonic stem cells and in early- and late-stage multipotent mesenchymal stem cells: Possible role of ABC plasma membrane transporters in maintaining human stem cell pluripotency

Romain Barbet; Isabelle Peiffer; James R. A. Hutchins; Antoinette Hatzfeld; Edith Garrido; Jacques Hatzfeld

The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporterlow phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders.


Methods of Molecular Biology | 2009

Optimization of Physiological Xenofree Molecularly Defined Media and Matrices to Maintain Human Embryonic Stem Cell Pluripotency

Isabelle Peiffer; Romain Barbet; Antoinette Hatzfeld; Ma-Lin Li; Jacques Hatzfeld

We describe in this chapter the development of a xenofree molecularly defined medium, SBX, associated with xenofree matrices, to maintain human embryonic stem cell (hESC) pluripotency as determined by phenotypic, functional and TLDA studies. This simple, inexpensive, and more physiological culture condition has been chosen because (1) it is xenofree and molecularly defined; it is devoid of albumin, which is a carrier of undefined molecules; (2) it maintains pluripotency, but very significantly reduces differentiation gene expression during hESC self-renewal, as compared to the widely used culture conditions tested so far; and (3) it can be further improved by replacing high concentrations of expensive additives by physiological concentrations of new factors. Xenofree molecularly defined media and matrices represent valuable tools for elucidating still unknown functions of numerous embryonic genes using more physiological culture conditions. These genes encode potential new factors controlling hESC self-renewal and pluripotency.


Data in Brief | 2016

Proteomic data on the nuclear interactome of human MCM9

James R. A. Hutchins; Sabine Traver; Philippe Coulombe; Isabelle Peiffer; Magali Kitzmann; Daniel Latreille; Marcel Méchali

We present data relating to the interactome of MCM9 from the nuclei of human cells. MCM9 belongs to the AAA+ superfamily, and contains an MCM domain and motifs that may confer DNA helicase activity. MCM9 has been shown to bind MCM8, and has been implicated in DNA replication and homologous recombination. However, the mechanistic basis of MCM9’s role in DNA repair is poorly understood, and proteins with which it interacts were hitherto unknown. We performed tandem affinity purification of MCM9 and its interacting proteins from nuclear extracts of human cells, followed by proteomic analysis, thereby generating a set of mass spectrometry data corresponding to the MCM9 interactome [1]. The proteomic data set comprises 29 mass spectrometry RAW files, deposited to the ProteomeXchange Consortium, and freely available from the PRIDE partner repository with the data set identifier PXD000212. A set of 22 interacting proteins identified from the proteomic data was used to create an MCM9-centered interactive network diagram, using the Cytoscape program. These data allow the scientific community to access, mine and explore the human nuclear MCM9 interactome.


Genome Research | 2011

Genome-Scale Analysis of Metazoan Replication Origins Reveals their Organization in Specific but Flexible Sites Defined by Conserved Features

Christelle Cayrou; Philippe Coulombe; Alice Vigneron; Slavica Stanojcic; Olivier Ganier; Isabelle Peiffer; Eric Rivals; Aurore Puy; Sabine Laurent-Chabalier; Romain Desprat; Marcel Méchali


Stem Cells and Development | 2007

Simultaneous Differentiation of Endothelial and Trophoblastic Cells Derived from Human Embryonic Stem Cells

Isabelle Peiffer; Denis Belhomme; Romain Barbet; Valérie Haydont; Yi-Ping Zhou; Nicolas Fortunel; Ma-Lin Li; Antoinette Hatzfeld; Jean-Noël Fabiani; Jacques Hatzfeld

Collaboration


Dive into the Isabelle Peiffer's collaboration.

Top Co-Authors

Avatar

Antoinette Hatzfeld

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jacques Hatzfeld

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Marcel Méchali

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Romain Barbet

Institut de Chimie des Substances Naturelles

View shared research outputs
Top Co-Authors

Avatar

Philippe Coulombe

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

James R. A. Hutchins

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ma-Lin Li

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Aurore Puy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christelle Cayrou

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Daniel Latreille

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge