Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Rouiller is active.

Publication


Featured researches published by Isabelle Rouiller.


Nature Medicine | 2011

Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity.

Wenjun Song; Jin-jin Chen; Alejandra M. Petrilli; Géraldine Liot; Eva Klinglmayr; Yue-Yue Zhou; Patrick Poquiz; Jonathan Tjong; Mahmoud A. Pouladi; Michael R. Hayden; Eliezer Masliah; Mark H. Ellisman; Isabelle Rouiller; Robert Schwarzenbacher; Blaise Bossy; Guy A. Perkins; Ella Bossy-Wetzel

Huntingtons disease is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (encoded by HTT). PolyQ length determines disease onset and severity, with a longer expansion causing earlier onset. The mechanisms of mutant huntingtin-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in Huntingtons disease pathogenesis. Here we tested whether mutant huntingtin impairs the mitochondrial fission-fusion balance and thereby causes neuronal injury. We show that mutant huntingtin triggers mitochondrial fragmentation in rat neurons and fibroblasts of individuals with Huntingtons disease in vitro and in a mouse model of Huntingtons disease in vivo before the presence of neurological deficits and huntingtin aggregates. Mutant huntingtin abnormally interacts with the mitochondrial fission GTPase dynamin-related protein-1 (DRP1) in mice and humans with Huntingtons disease, which, in turn, stimulates its enzymatic activity. Mutant huntingtin–mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1 K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in Huntingtons disease.


Nature Structural & Molecular Biology | 2002

Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle.

Isabelle Rouiller; Byron DeLaBarre; Andrew May; William I. Weis; Axel T. Brunger; Ronald A. Milligan; Elizabeth M. Wilson-Kubalek

p97 (also called VCP), a member of the AAA ATPase family, is involved in several cellular processes, including membrane fusion and extraction of proteins from the endoplasmic reticulum for cytoplasmic degradation. We have studied the conformational changes that p97 undergoes during the ATPase cycle by cryo-EM and single-particle analysis. Three-dimensional maps show that the two AAA domains, D1 and D2, as well as the N-domains, experience conformational changes during ATP binding, ATP hydrolysis, Pi release and ADP release. The N-domain is flexible in most nucleotide states except after ATP hydrolysis. The rings formed by D1 and D2 rotate with respect to each other, and the size of their axial openings fluctuates. Taken together, our results depict the movements that this and possibly other AAA ATPases can undergo during an ATPase cycle.


Journal of Cell Biology | 2008

The structural basis of actin filament branching by the Arp2/3 complex.

Isabelle Rouiller; Xiao-Ping Xu; Kurt J. Amann; Coumaran Egile; Stephan Nickell; Daniela Nicastro; Rong Li; Thomas D. Pollard; Niels Volkmann; Dorit Hanein

The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomography to reconstruct the branch junction with sufficient resolution to show how the Arp2/3 complex interacts with the mother filament. Our analysis reveals conformational changes in both the mother filament and Arp2/3 complex upon branch formation. The Arp2 and Arp3 subunits reorganize into a dimer, providing a short-pitch template for elongation of the daughter filament. Two subunits of the mother filament undergo conformational changes that increase stability of the branch. These data provide a rationale for why branch formation requires cooperative interactions among the Arp2/3 complex, nucleation-promoting factors, an actin monomer, and the mother filament.


Molecular Cell | 2000

A Major Conformational Change in p97 AAA ATPase upon ATP Binding

Isabelle Rouiller; Virginia M. Butel; Martin Latterich; Ronald A. Milligan; Elizabeth M. Wilson-Kubalek

AAA ATPases play central roles in cellular activities. The ATPase p97, a prototype of this superfamily, participates in organelle membrane fusion. Cryoelectron microscopy and single-particle analysis revealed that a major conformational change of p97 during the ATPase cycle occurred upon nucleotide binding and not during hydrolysis as previously hypothesized. Furthermore, our study indicates that six p47 adaptor molecules bind to the periphery of the ring-shaped p97 hexamer. Taken together, these results provide a revised model of how this and possibly other AAA ATPases can translate nucleotide binding into conformational changes of associated binding partners.


Journal of Biological Chemistry | 2006

Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2

Elizabeth S. Harris; Isabelle Rouiller; Dorit Hanein; Henry N. Higgs

Formin proteins are regulators of actin dynamics, mediating assembly of unbranched actin filaments. These multidomain proteins are defined by the presence of a Formin Homology 2 (FH2) domain. Previous work has shown that FH2 domains bind to filament barbed ends and move processively at the barbed end as the filament elongates. Here we report that two FH2 domains, from mammalian FRL1 and mDia2, also bundle filaments, whereas the FH2 domain from mDia1 cannot under similar conditions. The FH2 domain alone is sufficient for bundling. Bundled filaments made by either FRL1 or mDia2 are in both parallel and anti-parallel orientations. A novel property that might contribute to bundling is the ability of the dimeric FH2 domains from both FRL1 and mDia2 to dissociate and recombine. This property is not observed for mDia1. A difference between FRL1 and mDia2 is that FRL1-mediated bundling is competitive with barbed end binding, whereas mDia2-mediated bundling is not. Mutation of a highly conserved isoleucine residue in the FH2 domain does not inhibit bundling by either FRL1 or mDia2, but inhibits barbed end activities. However, the severity of this mutation varies between formins. For mDia1 and mDia2, the mutation strongly inhibits all effects of barbed end binding, but affects FRL1 much less strongly. Furthermore, our results suggest that the Ile mutation affects processivity. Taken together, our data suggest that the bundling activities of FRL1 and mDia2, while producing phenotypically similar bundles, differ in mechanistic detail.


Nature Chemistry | 2009

Metal-nucleic acid cages.

Hua Yang; Christopher K. McLaughlin; Faisal A. Aldaye; Graham D. Hamblin; Andrzej Z. Rys; Isabelle Rouiller; Hanadi F. Sleiman

Metal-nucleic acid cages are a promising new class of materials. Like metallo-supramolecular cages, these systems can use their metals for redox, photochemical, magnetic and catalytic control over encapsulated cargo. However, using DNA provides the potential to program pore size, geometry, chemistry and addressability, and the ability to symmetrically and asymmetrically position transition metals within the three-dimensional framework. Here we report the quantitative construction of metal-DNA cages, with the site-specific incorporation of a range of metals within a three-dimensional DNA architecture. Oligonucleotide strands containing specific environments suitable for transition-metal coordination were first organized into two DNA triangles. These triangles were then assembled into a DNA prism with linking strands. Metal centres were subsequently incorporated into the prisms at the pre-programmed locations. This unprecedented ability to position transition metals within a three-dimensional framework could lead to metal-DNA hosts with applications for the encapsulation, sensing, modification and release of biomolecules and nanomaterials.


Molecular and Cellular Biology | 2009

Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation.

Dalia Halawani; Andréa C. LeBlanc; Isabelle Rouiller; Stephen W. Michnick; Marc J. Servant; Martin Latterich

ABSTRACT Hereditary inclusion body myopathy associated with early-onset Paget disease of bone and frontotemporal dementia (hIBMPFTD) is a degenerative disorder caused by single substitutions in highly conserved residues of p97/VCP. All mutations identified thus far cluster within the NH2 domain or the D1 ring, which are both required for communicating conformational changes to adaptor protein complexes. In this study, biochemical approaches were used to identify the consequences of the mutations R155P and A232E on p97/VCP structure. Assessment of p97/VCP oligomerization revealed that p97R155P and p97A232E formed hexameric ring-shaped structures of ∼600 kDa. p97R155P and p97A232E exhibited an ∼3-fold increase in ATPase activity compared to wild-type p97 (p97WT) and displayed increased sensitivity to heat-induced upregulation of ATPase activity. Protein fluorescence analysis provided evidence for conformational differences in the D2 rings of both hIBMPFTD mutants. Furthermore, both mutations increased the proteolytic susceptibility of the D2 ring. The solution structures of all p97/VCP proteins revealed a didispersed distribution of a predominant hexameric population and a minor population of large-diameter complexes. ATP binding significantly increased the abundance of large-diameter complexes for p97R155P and p97A232E, but not p97WT or the ATP-binding mutant p97K524A. Therefore, we propose that hIBMPFTD p97/VCP mutants p97R155P and p97A232E possess structural defects that may compromise the mechanism of p97/VCP activity within large multiprotein complexes.


PLOS Biology | 2005

Mechanism of Filament Nucleation and Branch Stability Revealed by the Structure of the Arp2/3 Complex at Actin Branch Junctions

Coumaran Egile; Isabelle Rouiller; Xiao-Ping Xu; Niels Volkmann; Rong Li; Dorit Hanein

Actin branch junctions are conserved cytoskeletal elements critical for the generation of protrusive force during actin polymerization-driven cellular motility. Assembly of actin branch junctions requires the Arp2/3 complex, upon activation, to initiate a new actin (daughter) filament branch from the side of an existing (mother) filament, leading to the formation of a dendritic actin network with the fast growing (barbed) ends facing the direction of movement. Using genetic labeling and electron microscopy, we have determined the structural organization of actin branch junctions assembled in vitro with 1-nm precision. We show here that the activators of the Arp2/3 complex, except cortactin, dissociate after branch formation. The Arp2/3 complex associates with the mother filament through a comprehensive network of interactions, with the long axis of the complex aligned nearly perpendicular to the mother filament. The actin-related proteins, Arp2 and Arp3, are positioned with their barbed ends facing the direction of daughter filament growth. This subunit map brings direct structural insights into the mechanism of assembly and mechanical stability of actin branch junctions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Gigantism in unique biogenic magnetite at the Paleocene–Eocene Thermal Maximum

Dirk Schumann; Timothy D. Raub; Robert E. Kopp; Jean-Luc Guerquin-Kern; Ting-Di Wu; Isabelle Rouiller; Aleksey V. Smirnov; S. Kelly Sears; Uwe Lücken; Sonia M. Tikoo; Reinhard Hesse; Joseph L. Kirschvink; Hojatollah Vali

We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene–Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 μm long and hexaoctahedral prisms up to 1.4 μm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability—a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming—drove diversification of magnetite-forming organisms, likely including eukaryotes.


Journal of Cell Biology | 2005

Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function

Adam C. Martin; Xiao-Ping Xu; Isabelle Rouiller; Marko Kaksonen; Yidi Sun; Lisa Belmont; Niels Volkmann; Dorit Hanein; Matthew D. Welch; David G. Drubin

Contributions of actin-related proteins (Arp) 2 and 3 nucleotide state to Arp2/3 complex function were tested using nucleotide-binding pocket (NBP) mutants in Saccharomyces cerevisiae. ATP binding by Arp2 and Arp3 was required for full Arp2/3 complex nucleation activity in vitro. Analysis of actin dynamics and endocytosis in mutants demonstrated that nucleotide-bound Arp3 is particularly important for Arp2/3 complex function in vivo. Severity of endocytic defects did not correlate with effects on in vitro nucleation activity, suggesting that a critical Arp2/3 complex function during endocytosis may be structural rather than catalytic. A separate class of Arp2 and Arp3 NBP mutants suppressed phenotypes of mutants defective for actin nucleation. An Arp2 suppressor mutant increased Arp2/3 nucleation activity. Electron microscopy of Arp2/3 complex containing this Arp2 suppressor identified a structural change that also occurs upon Arp2/3 activation by nucleation promoting factors. These data demonstrate the importance of Arp2 and Arp3 nucleotide binding for nucleating activity, and Arp3 nucleotide binding for maintenance of cortical actin cytoskeleton cytoarchitecture.

Collaboration


Dive into the Isabelle Rouiller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Li

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Colman

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Franck Duong

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge