Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Vassias is active.

Publication


Featured researches published by Isabelle Vassias.


Nature Genetics | 2011

SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin

Christèle Maison; Delphine Bailly; Danièle Roche; Rocio Montes de Oca; Aline V Probst; Isabelle Vassias; Florent Dingli; Bérengère Lombard; Damarys Loew; Jean-Pierre Quivy; Geneviève Almouzni

HP1 enrichment at pericentric heterochromatin is considered important for centromere function. Although HP1 binding to H3K9me3 can explain its accumulation at pericentric heterochromatin, how it is initially targeted there remains unclear. Here, in mouse cells, we reveal the presence of long nuclear noncoding transcripts corresponding to major satellite repeats at the periphery of pericentric heterochromatin. Furthermore, we find that major transcripts in the forward orientation specifically associate with SUMO-modified HP1 proteins. We identified this modification as SUMO-1 and mapped it in the hinge domain of HP1α. Notably, the hinge domain and its SUMOylation proved critical to promote the initial targeting of HP1α to pericentric domains using de novo localization assays, whereas they are dispensable for maintenance of HP1 domains. We propose that SUMO-HP1, through a specific association with major forward transcript, is guided at the pericentric heterochromatin domain to seed further HP1 localization.


The Journal of Neuroscience | 2007

Differential Intrinsic Response Dynamics Determine Synaptic Signal Processing in Frog Vestibular Neurons

Mathieu Beraneck; Sandra Pfanzelt; Isabelle Vassias; Martin Rohregger; Nicolas Vibert; Pierre-Paul Vidal; Lee E. Moore; Hans Straka

Central vestibular neurons process head movement-related sensory signals over a wide dynamic range. In the isolated frog whole brain, second-order vestibular neurons were identified by monosynaptic responses after electrical stimulation of individual semicircular canal nerve branches. Neurons were classified as tonic or phasic vestibular neurons based on their different discharge patterns in response to positive current steps. With increasing frequency of sinusoidally modulated current injections, up to 100 Hz, there was a concomitant decrease in the impedance of tonic vestibular neurons. Subthreshold responses as well as spike discharge showed classical low-pass filter-like characteristics with corner frequencies ranging from 5 to 20 Hz. In contrast, the impedance of phasic vestibular neurons was relatively constant over a wider range of frequencies or showed a resonance at ∼40 Hz. Above spike threshold, single spikes of phasic neurons were synchronized with the sinusoidal stimulation between ∼20 and 50 Hz, thus showing characteristic bandpass filter-like properties. Both the subthreshold resonance and bandpass filter-like discharge pattern depend on the activation of an ID potassium conductance. External current or synaptic stimulation that produced impedance increases (i.e., depolarization in tonic or hyperpolarization in phasic neurons) had opposite and complementary effects on the responses of the two types of neurons. Thus, membrane depolarization by current steps or repetitive synaptic excitation amplified synaptic inputs in tonic vestibular neurons and reduced them in phasic neurons. These differential, opposite membrane response properties render the two neuronal types particularly suitable for either integration (tonic neurons) or signal detection (phasic neurons), respectively, and dampens variations of the resting membrane potential in the latter.


The Journal of Neuroscience | 2010

Functional Organization of Vestibular Commissural Connections in Frog

David Malinvaud; Isabelle Vassias; Ingrid Reichenberger; Christian Rössert; Hans Straka

Central vestibular neurons receive substantial inputs from the contralateral labyrinth through inhibitory and excitatory brainstem commissural pathways. The functional organization of these pathways was studied by a multi-methodological approach in isolated frog whole brains. Retrogradely labeled vestibular commissural neurons were primarily located in the superior vestibular nucleus in rhombomeres 2/3 and the medial and descending vestibular nucleus in rhombomeres 5–7. Restricted projections to contralateral vestibular areas, without collaterals to other classical vestibular targets, indicate that vestibular commissural neurons form a feedforward push–pull circuitry. Electrical stimulation of the contralateral coplanar semicircular canal nerve evoked in canal-related second-order vestibular neurons (2°VN) commissural IPSPs (∼70%) and EPSPs (∼30%) with mainly (∼70%) disynaptic onset latencies. The dynamics of commissural responses to electrical pulse trains suggests mediation predominantly by tonic vestibular neurons that activate in all tonic 2°VN large-amplitude IPSPs with a reversal potential of −74 mV. In contrast, phasic 2°VN exhibited either nonreversible, small-amplitude IPSPs (∼40%) of likely dendritic origin or large-amplitude commissural EPSPs (∼60%). IPSPs with disynaptic onset latencies were exclusively GABAergic (mainly GABAA receptor-mediated) but not glycinergic, compatible with the presence of GABA-immunopositive (∼20%) and the absence of glycine-immunopositive vestibular commissural neurons. In contrast, IPSPs with longer, oligosynaptic onset latencies were GABAergic and glycinergic, indicating that both pharmacological types of local inhibitory neurons were activated by excitatory commissural fibers. Conservation of major morpho-physiological and pharmacological features of the vestibular commissural pathway suggests that this phylogenetically old circuitry plays an essential role for the processing of bilateral angular head acceleration signals in vertebrates.


Neuroscience | 2006

Modulation of inhibitory and excitatory synaptic transmission in rat inferior colliculus after unilateral cochleectomy: An in situ and immunofluorescence study

M. Argence; Ignacio Saez; R. Sassu; Isabelle Vassias; Pierre-Paul Vidal; C. de Waele

We investigated whether inhibitory synaptic transmission mediated through glycinergic receptor, GABAA receptors, glutamic acid decarboxylase, the enzyme synthesizing GABA, and excitatory synaptic transmission through alpha-amino-3-hydroxi-5-methylisoxazole-4-propionic acid receptors and N-methyl-D-aspartate receptors are affected in the inferior colliculus by unilateral surgical cochleectomy. In situ hybridization and immunohistofluorescence studies were performed in normal and lesioned adult rats at various times following the lesion (1-150 days). Unilateral auditory deprivation decreased glycine receptor alpha1 and glutamic acid decarboxylase 67 expression in the contralateral central nucleus of the inferior colliculus. This decrease began one day after cochleectomy, and continued until day 8; thereafter expression was consistently low until day 150. The glycine receptor alpha1 subunit decrease did not occur if a second contralateral cochleectomy was performed either on day 8 or 150 after the first cochleectomy. Bilateral cochleectomy caused also a bilateral inferior colliculus diminution of glutamic acid decarboxylase 67 mRNA at post-lesion day 8 but there were no changes in glycine receptor alpha1 compared with controls. In contrast, the abundance of other alpha2-3, and beta glycine receptor, gephyrin, the anchoring protein of glycine receptor, the alpha1, beta2 and gamma2 subunits of GABAA receptors, GluR2, R3 subunits of alpha-amino-3-hydroxi-5-methylisoxazole-4-propionic acid receptors, and NR1 and NR2A transcripts of N-methyl-D-aspartate receptors was unaffected during the first week following the lesion. Thus, unilateral cochlear removal resulted in a selective and long-term decrease in the amount of the glycine receptor alpha1 subunit and of glutamic acid decarboxylase 67 in the contralateral central nucleus of the inferior colliculus. These changes most probably result from the induced asymmetry of excitatory auditory inputs into the central nucleus of the inferior colliculus and may be one of the mechanisms involved in the tinnitus frequently encountered in patients suffering from a sudden hearing loss.


Neuroscience | 2005

Modulation of the glutamatergic receptors (AMPA and NMDA) and of glutamate vesicular transporter 2 in the rat facial nucleus after axotomy

Lyndell Eleore; Isabelle Vassias; Pierre-Paul Vidal; C. de Waele

Facial nerve axotomy is a good model for studying neuronal plasticity and regeneration in the peripheral nervous system. We investigated in the rat the effect of axotomy on the different subunits of excitatory glutamatergic AMPA (GLuR1-4), NMDA (NR1, NR2A-D) receptors, post-synaptic density 95, vesicular glutamate transporter 2, beta catenin and cadherin. mRNA levels and/or protein production were analyzed 1, 3, 8, 30 and 60 days after facial nerve axotomy by in situ hybridization and immunohistofluorescence. mRNAs coding for the GLuR2-4, NR1, NR2A, B, D subunits of glutamatergic receptors and for post-synaptic density 95, were less abundant after axotomy. The decrease began as early as 1 or 3 days after axotomy; the mRNAs levels were lowest 8 days post-lesion, and returned to normal or near normal 60 days after the lesion. The NR2C subunit mRNAs were not detected in either lesioned or intact facial nuclei. Immunohistochemistry using specific antibodies against GLuR2-3 subunits and against NR1 confirmed this down-regulation. There was also a large decrease in vesicular glutamate transporter 2 immunostaining in the axotomized facial nuclei at early stages following facial nerve section. In contrast, no decrease of NR2A subunit and of post-synaptic density 95 could be detected at any time following the lesion. beta Catenin and cadherin immunoreactivity pattern changed around the cell body of facial motoneuron by day 3 after axotomy, and then, tends to recover at day post-lesion 60 days. Therefore, our results suggest a high correlation between restoration of nerve/muscle synaptic contact, synaptic structure and function in facial nuclei. To investigate the mechanisms involved in the change of expression of these proteins following axotomy, the facial nerve was perfused with tetrodotoxin for 8 days. The blockade of action potential significantly decreased GLuR2-3, NR1and NR2A mRNAs in the ipsilateral facial nuclei. Thus, axotomy-induced changes in mRNA abundance seemed to depend partly on disruption of activity.


Neuroscience | 2002

GluR2–R4 AMPA subunit study in rat vestibular nuclei after unilateral labyrinthectomy: an in situ and immunohistochemical study

G. Rabbath; Isabelle Vassias; Pierre-Paul Vidal; C. de Waele

In the present investigation, we address the question of whether the expression of GluR2-R4 subunits mRNAs and GluR2 and GluR4 subunits protein of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-selective glutamate receptors are modulated in the vestibular nuclei following unilateral labyrinthectomy. Specific GluR2-R4 radioactive oligonucleotides were used to probe sections of rat vestibular nuclei according to in situ hybridization methods. The signal was detected by means of film or emulsion photography. GluR2 and GluR4 subunit expression were also measured in control and operated rats by use of specific monoclonal GluR2 and GluR4 antibodies. Animals were killed at different stages following the lesion: 1, 3 or 8 days for the in situ hybridization study and 4 and 8 days for the immunohistochemical study. In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei expressed all the GluR2, GluR3 and GluR4 subunit mRNAs. Moreover, numerous vestibular nuclei neurons are endowed with AMPA receptors containing the GluR2 and the GluR4 subunits. In unilaterally labyrinthectomized rats, no asymmetry could be detected on autoradiographs between the two medial vestibular nuclei probed with the GluR2 and the GluR4 oligonucleotide probes regardless of the delay following the lesion. However, compared to control, a bilateral decrease (-22%) in GluR3 gene expression was observed in the medial vestibular nuclei 3 days after the lesion followed by a return to normal at day 8 post-lesion. No significant asymmetrical changes in the density of GluR2- and GluR4-immunopositive cells could be detected between the intact and deafferented sides in any part of the vestibular nuclear complex and at any times (day 4 or day 8) following the lesion. Our data show that the removal of glutamatergic vestibular input induced an absence of modulation of GluR2 and GluR4 gene and subunits expression. This demonstrates that GluR2 and GluR4 expression do not play a role in the recovery of the resting discharge of the deafferented medial vestibular nuclei neurons and consequently in the functional restoration of the static postural and oculomotor deficits. The functional role of the slight and bilateral GluR3 mRNA decrease in the vestibular nuclei remains to be elucidated.


Neuroscience | 2003

Modulation of the voltage-gated sodium- and calcium-dependent potassium channels in rat vestibular and facial nuclei after unilateral labyrinthectomy and facial nerve transsection: An in situ hybridization study

T. Patk; Isabelle Vassias; Pierre-Paul Vidal; C. de Waele

We investigated whether the expression in the vestibular and facial nuclei of the voltage-dependent Na alpha I and Na alpha III channels and of the Ca(2+)-activated K(+)-channel subunits, small-conductance (SK) 1, SK2 and SK3, is affected by unilateral inner-ear lesion including both labyrinthectomy and transsection of the facial nerve. Specific sodium (Na alpha I, Na alpha III) and potassium (SK1, SK2, SK3) radioactive oligonucleotides were used to probe sections of rat vestibular and facial nuclei by in situ hybridization methods. The signal was detected with films or by emulsion photography. Animals were killed at various times following the lesion: 1 day, 3 days, 8 days or 30 days. In normal adult animals, mRNAs for Na alpha I, and SK1, SK2, and SK3 channels were found in several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei and the facial nuclei. In contrast, there was little Na alpha III subunit mRNA anywhere in the brainstem. Following unilateral inner ear lesion in rats, the medial vestibular nuclei were probed with Na alpha I, Na alpha III, SK1, SK2 and SK3 oligonucleotide probes: autoradiography indicated no difference between the two sides, at any of the times studied. Na alpha I and SK2 mRNAs were less abundant and Na alpha III, SK1 and SK3 mRNAs were more abundant in the axotomized facial nuclei motoneurons than in controls. Removal of vestibular input did not affect the abundance of the mRNAs for the sodium- or calcium-dependent potassium channels in the deafferented vestibular nuclei. There is thus no evidence that modulation of these conductances contributes to the recovery of a normal resting discharge of the deafferented vestibular neurons and consequently to the functional recovery of the postural and oculomotor deficits observed at the acute stage. However, facial axotomy induced a long-term modulation of both Na and SK conductances mRNAs in the facial motoneurons ipsilateral to the lesion. Presumably, retrograde injury factors resulting from axotomy were able to alter durably the membrane properties and thus the excitability of the facial motoneurons.


Genes & Development | 2016

The CENP-T/-W complex is a binding partner of the histone chaperone FACT

Lisa Prendergast; Sebastian Müller; Yiwei Liu; Hongda Huang; Florent Dingli; Damarys Loew; Isabelle Vassias; Dinshaw J. Patel; Kevin F. Sullivan; Geneviève Almouzni

The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A-H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres.


European Journal of Neuroscience | 2005

Modulation of glycine receptor subunits and gephyrin expression in the rat facial nucleus after axotomy

Lyndell Eleore; Isabelle Vassias; Pierre-Paul Vidal; Antoine Triller; Catherine de Waele

In the last decade, numerous studies have investigated molecular changes in excitatory glutamatergic receptors in axotomized motoneurons, but few data are available concerning the modulation of inhibitory amino acid receptors. We report here the effect of axotomy on the expression of glycine receptors, gephyrin, vesicular inhibitory amino acid transporter (VIAAT) and synapsin I in rat facial motor neurons as demonstrated by in situ hybridization and immunohistochemistry. The facial nerve trunk was sectioned unilaterally and rats were killed 1, 3, 8, 30 or 60 days after surgery. We investigated the mechanisms underlying the changes in production of these proteins following axotomy by perfusing the facial nerve with colchicine or tetrodotoxin, and injecting cardiotoxin or botulinum toxin independently and unilaterally into the whisker pads of normal rats. Animals were killed 8 days later and processed for immunohistochemistry. The abundance of GlyR subunits and gephyrin fell sharply in the axotomized facial nucleus. This decrease began 1 day after axotomy and was lowest at 8 days, with protein levels returning to normal by day 60. Abnormal synapsin immunolabelling was also observed between days 8 and 60 after axotomy but we detected no change in VIAAT immunoreactivity. The effect of colchicine was similar to, but weaker than, that of axotomy. In contrast, tetrodotoxin, cardiotoxin and botulinum toxin had no significant effect. Thus, axotomy‐induced changes probably resulted from a loss of trophic factor transported from the periphery or a positive injury signal, or both. They did not seem to depend on the disruption of activity.


Experimental Brain Research | 2005

An in situ hybridization and immunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat

Lyndell Eleore; Isabelle Vassias; Isabelle Bernat; Pierre-Paul Vidal; Catherine de Waele

Collaboration


Dive into the Isabelle Vassias's collaboration.

Top Co-Authors

Avatar

Pierre-Paul Vidal

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

C. de Waele

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Lyndell Eleore

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damarys Loew

PSL Research University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aline V Probst

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Antoine Triller

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge